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Abstract

The geochemistry of the Late Paleozoic—Early Mesozoic volcano-plutonic rocks of northern Mongolia is a key factor
to understand the subduction-related magmatism at the southern margin of “Siberian continent (Siberian craton + accreted
geologic units).” Many studies have been carried out in the volcano-plutonic rocks; however, fundamental questions on
its detail petrogenesis still remain unanswered. This paper describes the geochemistry of the Permian—Triassic volcano-
plutonic rocks at the Oyut-uul area, northeast of Darkhan City, Mongolia. The mid-ocean ridge basalt (MORB)-normalized
multi-element pattern (spidergram) for the examined rocks shows an enrichment of large-ion lithophile elements (LILE)
against high-field-strength elements (HFSE) and rare earth elements (REE), with clear negative Nb anomaly to suggest an
arc-related igneous activity. The most data are plotted in the calc-alkaline field in the SiO, vs. FeO*/MgO diagram. It is,
thus, concluded that the examined rocks are of calc-alkaline series formed at an arc environment. The present samples, 53—
78 wt.% SiO,, high Al,O; and Sr concentrations, high La/YDb ratio, and low K,0/Na,O ratio, have adakitic nature derived
from oceanic slab-melt. They are quite similar to the marginal facies of the Kitakami adakitic granite of Japan in Sr/Y-Y
relationship, MgO concentration, spidergram, and REE chondrite-normalized pattern. It is considered that the marginal
facies of the Kitakami adakitic granite was resulted from interaction between the slab-melt and mantle peridotite/lower
crustal amphibolite during their ascent. The Oyut-uul rocks might be also derived from oceanic slab-melt interacted with

mantle peridotite/lower crustal amphibolite.
Key word: Late Paleozoic—Early Mesozoic; adakites; southern margin of Siberian continent; Mongolia

Introduction
The development process of the Central Asian Orogenic belt (CAOB, Fig. 1), which lies among Siberian
craton, North China block, Tarim block, and East European craton (e.g. Sengér et al., 1993), is important to
understand tectonic history of Eurasian continent (e.g. Kovalenko et al., 2004). The CAOB is generally considered
to have been formed by subduction-accretion process of oceanic plate, volcanic arc magmatism, and collisions of
continental fragments during the amalgamation of these cratons and blocks. Geological information of Mongolia,
between the North China block and the Siberian craton, offers a key to understanding of the Paleo-Mesozoic

tectonics of the southern margin of “Siberian continent (Siberian craton + accreted geologic units)” at southern
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Fig.2 Simplified tectonic division of Mongolia (modified from Badarch et al. [2002] and Tomurtogoo [2003]).




CAOB, and general features of the Khangai-Daur and Sayan-Baikal belts, a major constituent of the northern
Mongolia, was substantially established (e.g. Badarch et al., 2002; Kurihara et al., 2008; Onon, 2017 MS; Onon
and Tsukada, 2017; Tomurtogoo, 2003, Fig. 2). Kurihara et al. (2008) revealed that a part of the Khangai-Daur
belt is composed of Late Paleozoic accretionary complex that formed by subduction of previous oceanic plate
of the Mongol-Okhotsk Ocean. Onon (2017 MS) refined the tectonic division of these belts, i.e. Late Paleozoic—
Early Mesozoic (?) accretionary complex of the Khangai-Daur belt and continental affinity (Precambrian—
Early Paleozoic basement and intrusive rocks) of the Sayan-Baikal belt (Fig. 2), and described a late Paleozoic
subduction-related “doubly-vergent structure” within them.

Although the subduction-related Late Paleozoic—Early Mesozoic volcano-plutonic rocks in the southern margin
of the Sayan-Baikal belt is an important factor to reveal the arc system along the Siberian continental margin, little
attention has been made at its petrogenesis (Fig. 2). This paper describes geochemistry of the Permian—Triassic
volcanic and plutonic rocks in the Oyut-uul area, northeast of Darkhan City, Mongolia, and makes preliminary

discussion on its petrogenesis (Fig. 2).

Geological framework

Mongolia is geologically divided into the Northern and Southern superblocks by the Main Mongolian
Lineament (MML; Tomurtogoo, 2003, Fig. 2). The Northern superblock, i.e. southern margin of the “Siberian
continent,” is largely occupied by the Late Paleozoic—Early Mesozoic (?) accretionary complex of the Khangai-
Daur belt and the continental affinity of the Sayan-Baikal belt (Petrov et al., 2014; Onon, 2017 MS; Onon and
Tsukada, 2017, Fig. 2). The Khangai-Daur belt is composed mainly of sandstone and mudstone with minor
amounts of radiolarian chert, siliceous mudstone, oceanic island basalts, and limestone (e.g. Badarch et al., 2002;
Tomurtogoo, 2003; Kurihara et al., 2008; Takeuchi et al., 2012; Tsukada et al., 2013). The rocks of the belt are
intruded by Permian—Jurassic granitic rocks, and are partly metamorphosed and sheared. The Sayan-Baikal belt is
mainly composed of Precambrian—Cambrian metamorphic rocks and limestone, Precambrian—Ordovician granitic
rocks, and Silurian—Carboniferous limestone, volcanic rocks and clastic rocks. These rocks are covered/intruded
by the Late Paleozoic—Early Mesozoic volcano-plutonic rocks, then are intruded by Mesozoic granitic rocks (e.g.
Onon, 2017 MS).

The study area, in the Sayan-Baikal belt, exposes the Late Paleozoic—Early Mesozoic volcano-plutonic rocks.
The rocks in the area are assigned to the Permian Khanui Group and the Permian—Triassic Selenge complex
(Gombosuren and Batchuluun, 1994, Fig. 3). The Khanui Group here is composed mainly of andesite—dacite lava
and pyroclastic rocks. The lava is fine to coarse-grained, and has intersertal, subophitic/ophitic or porphyritic
textures. The main constituent of the rock is plagioclase, and next in abundance is clinopyroxene, then hornblende
and its pseudomorph replaced by chlorite. In the lava showing porphyritic texture, idiomorphic or hypidiomorphic
laths of plagioclase, more than 1 mm in major axis, lie in groundmass composed of smaller plagioclase,
clinopyroxene, and interstitial chloritic material. It was partly altered to the extent that some of the minerals, except
for plagioclase and clinopyroxene, are replaced by secondary minerals such as chlorite and opaque minerals. It is
considered that the Khanui Group is intruded by the rocks of the Selenge complex (Gombosuren and Batchuluun,
1994). The Selenge complex in this area is largely made up of diorite—granodiorite—granite, which is intruded by
numerous andesite/dacite/diorite dikes. The diorite—granodiorite—granite is generally medium- to coarse-grained,
holocrystalline, and the majority of the plagioclase and quartz crystals are idiomorphic, fresh, and clear. Biotite

is commonly included in the diorite—granodiorite—granite. The dike rock, hemicrystalline, porphyritic/aphyric, is
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composed of idiomorphic to hypidiomorphic laths of plagioclase and smaller interstitial patches of plagioclase
and chloritic material. The Khanui Group yields Permian plant fossils (Mossakovsky and Tomurtogoo, 1976). The
Selenge complex gives **Ar-"Ar ages of 258.6 = 3.3 Ma and 247 = 3.7 Ma, and K-Ar ages of 250210 Ma (Koval
et al., 1982; Gerel and Munkhtsengel, 2005; Munkhtsengel et al., 2007; Sotnikov et al., 1985).

Methodology

Thirty-five samples (nine from andesite—dacite lava of the Khanui Group, seventeen from the diorite—

granodiorite—granite of the Selenge complex, and nine from the andesite/dacite/diorite dike) were taken for

Whole-rock chemistry




analysis (Fig. 3). After coarse crushing, veins and altered parts of the samples were carefully excluded using X
20 hand loupe. Each analysis sample weighed > 500 g. Major element compositions and Co, Zr, Nb, and Th were
determined by X-ray fluorescence (XRF; Rigaku Primus II ZSX equipped with Rh X-ray tube, 50 kV, 60 mA),
and other trace elements and rare earth elements (REE) were analyzed by Inductively Coupled Plasma Mass
Spectrometry (Quadrupole type ICP-MS; Agilent 7700x) installed at Nagoya University. In the XRF analysis, glass
beads were prepared by fusing mixtures of 1.5 g of powdered sample with 6.0 g of lithium tetraborate. Calibration
was carried out using standard rock samples issued by the Geological Survey of Japan (GSJ) and the composite
standards prepared by Yamamoto and Morishita (1997). Analytical precision of major elements was estimated to
be < 1% for Si and about 3% for other elements, except for CaO, MgO and Na,O, whose analytical precision is >
3% when the measured level is < 0.1% (Takebe and Yamamoto, 2003), and that for trace elements was estimated
to be less than 10% (Yamamoto and Morishita, 1997). The other trace elements and REE were determined based
on the method that described by Yamamoto et al. (2005). About 30 mg of each sample was digested with a mixed
solution of HF-HCIO, (2:1 by volume) at 150 °C. After complete evaporation of the acids, 2 ml of 1.7 N-HCI was
added to dissolve the cake. The residue was separated by centrifugation at 12000 rpm with a 2 ml polypropylene
tube. The supernatant after centrifugation was transferred to another 10 ml Teflon beaker. The residue was then
fused with HF-HCIO, (2:1 by volume) again at 150 °C. The fused cake was dissolved with about 2 ml 1.7 N-HCl
by mild heating, and the solution was centrifuged at 12000 rpm. In most cases, no residue was recognized after
centrifugation. The HCI solution was evaporated to dryness and then the fused cake was re-dissolved in 2%-
HNO; solution and determined by ICP-MS. Indium and Bi were used for tracing ICP sensitivities; the In and Bi
concentrations were mostly same throughout the analysis. The oxide generation factor (LnO/Ln) was determined
for each 20 ppb solution and used for REE analytical data correction. Analytical accuracy was checked by repeated
analysis of standard samples which were prepared from JB-1a (basalt: GSJ geochemical reference sample) and
BCR-1 (basalt: geochemical reference materials of the US Geological Survey). In the ICP-MS analysis, the
correlation coefficients (R-value) of each element, calculated for five standard samples, were > 0.9999 and the
concentration relative standard deviation of the data were mostly less than 3 %. The whole-rock compositions of
the samples are listed in Table 1, and are displayed on variation diagrams for selected elements against SiO, in Fig.

4.

Geochemical description of the samples

The SiO, concentration is between 58—67 wt.% in the lava of the Khanui Group, 53—78 wt.% in the diorite—
granodiorite—granite of the Selenge complex, and 53—-68 wt.% in the andesite/dacite/diorite dike. The loss of
ignition of the samples is mostly less than 4 wt.% (Table 1). The samples are nearly identical to each other in their
concentration of the following elements: Al,O; ca. 16 wt.%; Na,O ca. 4 wt.%; Zr ca. 190 ppm; Nb ca. 6 ppm (Table
1, Fig. 4). K,O, Rb, and Ba show an increasing trend, and Fe,O;*, TiO,, MnO, CaO, MgO, P,O;, Co, Cr, Sr and
Y show a decreasing trend against increasing of SiO, in the variation diagram (Fig. 4). The rocks are assigned
to medium-potassium series (Fig. 4). The samples have FeO*/MgO ratio ranging from 1.1 to 8.8, and MgO
concentration ranges from 0.2 to 4.0. The samples have high Sr concentration (172—-1470 ppm, avg. 557 ppm), and
La/YD ratio ranges from 5 to 19. The MORB-normalized multi-element concentration diagrams (hereinafter called
“spidergram”) show reducing trend, and distinctive negative Nb and Cr anomalies and positive K and Pb anomalies
(Fig. 5). The chondrite-normalized REE patterns show reducing trend, that is, enriched in Light-REE and depleted
in Heavy-REE (Fig. 6).
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Fig. 5 MORB-normalized multi-element concentrations diagrams (spidergram) of the examined
samples. Normalizing MORB composition by Sun and McDonough (1989) is used.

Magma type of the examined rocks

The geochemistry of igneous rocks gives evidence for the tectonic setting of the igneous activity that formed
it because the chemical composition of igneous rocks varies according to its origins, and many diagrams for
discrimination of igneous rocks have been proposed (e.g. Pearce, 1982). In this section, selective discrimination
diagrams are used to discuss the magma type of the volcano-plutonic rocks in the Oyut-uul area.

The data from the Khanui Group, Selenge complex and dike make a liner trend together in the variation
diagram, and therefore, they might have had same origin (Fig. 4). The spidergrams for the samples show
geochemical characteristics similar to arc-related igneous rocks, such as enrichment of large-ion lithophile
elements (LILE) in comparison to high-field-strength elements (HFSE) and REE with negative Nb anomaly (e.g.
Pearce et al., 2005, Fig. 5). The most data are plotted in the calc-alkaline field in the SiO, vs. FeO*/MgO diagram
(Miyashiro, 1974, Fig. 7). Taking these lines of evidence together, it is concluded that the examined rocks are of



1000

Khanui Group

N
o
[S)

sample / C1-chondrite
>

1000

N
o
S

sample / C1-chondrite

o

1000

N
o
S

sample / C1-chondrite

o

Fig. 6 Chondorite-normalized REE patterns of the examined samples. Normalizing
chondrite values are after Sun and McDonough (1989).

calc-alkaline series formed at an arc environment. The samples have extremely high Sr concentration similar to the
adakitic rocks (Table 1). The adakites are characterized by SiO, > 56 wt.%, ALO;> 15 wt.%, Sr > 400 ppm, high
Str/Y ratio, and fractionated REE (e.g. Defant and Drummond, 1990; Drummond et al., 1996; Martin, 1999). The
present samples, SiO, 53-78 wt.% (avg. 66 wt.%), ALLO; 13—19 wt.% (avg. 16 wt.%), Sr 172-1470 ppm (avg.
557 ppm), St/Y 12-332 (avg. 41) and La/Yb 5-18 (avg. 10), likely have adakitic nature in this aspect.

It is suggested that typical adakitic magma is originated from partial melting of subducted oceanic slab at ca. 2.0
GPa and 900-950 °C (e.g. Defant and Drummond, 1990; Rapp, 1997; Sen and Dunn, 1994), and various processes
during its rising up through mantle wedge and crust cause the diversity of adakites. Whereas, Atherton and Petford
(1993) presented that the partial melting of newly under-plated basaltic crust should be considered as an alternative

way of generating of adakites. Zhang et al. (2005) divided the adakites into the following two types based on



their origins: adakites derived from the partial melting of subducted oceanic slab (Type 1), and adakites derived
from the partial melting of newly under-plated basaltic crust (Type 2). Distinct geochemical differences (K,O and
Al,O,contents, Mg#(=100 X Mg/(Mg+Fe)) and 0 Sr values) between these types are recognized. Type 2 adakites,
for example, generally have lower Al,O;concentration (less than ca. 16 wt.%) and higher K,0/Na,O ratio (ca. 0.5
or more) than Type 1 (Kamei et al., 2009; Liu et al., 2010; Zhang et al., 2005). The present samples, having high
Al,O, concentration (13—19 wt.%, avg. 16 wt.%) and low K,0/Na,O ratio (0.2 — 1.0, avg. 0.5), coincide with the
type 1 which is derived from the oceanic slab-melt (Fig. 8). Therefore, it is likely that the rocks of the Oyut-uul
were originated from a subducted slab-melt, from viewpoint of Al, Na, and K contents.

Spidergrams and REE chondrite-normalized patterns of the samples are similar to those of the marginal facies

of the Kitakami adakitic granite of Japan (Tsuchiya et al., 2007, Fig. 9). The rocks are comparatively similar to
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the marginal facies of the Kitakami adakitic granite also in having transitional characteristics between the adakite
and island arc andesite/dacite/rhyolite in Sr/Y-Y relationship, and in having slightly higher MgO concentration
than experimental slab-melt (Rapp and Watson, 1995; Sen and Dunn, 1994; Tsuchiya et al., 2007, Figs. 10 and 11).
Tsuchiya et al. (2007) pointed out that the central facies of the Kitakami adakitic granite substantially represents
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REE patterns (b) of the rocks from Oyut-uul area compared to the Kitakami adakitic
granites. The data of the Kitakami adakitic granites are from Tsuchiya et al. (2007).
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Winther and Newton (1991), Sen and Dunn (1994), and Rapp and Watson (1995).

the primitive slab-melt composition, on the other hand, marginal facies of that was resulted from interaction
between the slab-melt and mantle peridotite/lower crustal amphibolite during their ascent. Experimental petrology
revealed that interaction with peridotite increases the Mg# in the melt generated by partial melting of mid-oceanic
ridge basalt (e.g. Rapp et al., 1999). The samples, which have higher Mg# than experimental slab-melt, might
imply that the initial magma of the Oyut-uul rocks derived from oceanic slab-melt had interacted with mantle

peridotite (Fig. 12).



Summary

1. The examined rocks (lava of the Khanui Group, plutonic rock of the Selenge complex, and andesite/dacite/
diorite dike) show a liner trend together in the variation diagram, and therefore, they might have had same origin.

2. The rocks are of calk-alkaline series formed at an arc environment.

3. The rocks have an adakitic nature derived from oceanic slab-melt.

4. The rocks are similar to the marginal facies of the Kitakami adakitic granite of Japan in having transitional
characteristics between the adakite and island arc andesite/dacite/rhyolite in Sr/Y-Y relationship, and in having
slightly higher MgO concentration than experimental slab-melt. Spidergram and REE chondrite-normalized pattern
also suggest similarity between the present rocks and the marginal facies of the Kitakami granite.

5. The adakitic volcanic rock, derived from oceanic slab-melt, in the Sayan-Baikal belt presented in this paper

gives concrete confirmation of the Late Paleozoic subduction of an oceanic plate beneath the “Siberian continent.”
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