名古屋大学博物館のSEM-EDXによる含水鉱物化学組成の定量分析

Quantitative analysis of chemical composition of hydrous silicate minerals using SEM-EDX installed at Nagoya University Museum

東田 和弘 (TSUKADA Kazuhiro)*

*名古屋大学博物館 〒464-8601 名古屋市千種区不老町 Nagoya University Museum, Nagoya 464-8601, Japan

はじめに

走査型電子顕微鏡(SEM)に搭載されたエネルギー分散型X線分光器(EDX)による定量分析が実 用化され、微小領域分析の様々な分野で活用されている.地学分野では、造岩鉱物や火山ガラスなど の定量分析について様々な事例研究が報告され、主成分元素に関しては電子線マイクロアナライザー (EPMA)と遜色ない精度で定量が可能となっている(木村、1994;佐野、2003;川野ほか、2010;大 場ほか、2011;小暮ほか、2014;東田、2018など).

電子線照射によるX線定量分析では、測定値はプローブ電流の変化とともに増減するが、各元素濃 度の相対比はほぼ一定である.したがって名古屋大学博物館設置のSEM-EDXでは、測定値の合計を 100%規格化することによって無水鉱物の主成分元素濃を見積もっている(束田、2018).しかしこの方 法では、EDXで検出できないH₂Oを主成分として含む鉱物(以下、含水鉱物)の定量分析はできない. 一方、地学分野では、火成・変成作用における温度・圧力条件の推定などの際に、含水鉱物の化学組 成が重要となることがある.含水鉱物の化学組成を見積もるためには、「H₂O以外の各主成分元素の濃 度」を正確に求める必要がある.言い換えると、スタンダード登録時と未知試料測定時のプローブ電流 を同一にして、各主成分元素の濃度を正確に測定する必要がある.しかしながら、名古屋大学博物館の SEMは"プローブ設定"機能によってプローブ電流を相対的に増減させることは可能であるが、プロー ブ電流値そのものを制御することはできない.そこで今回、SEMに微小電流計を接続し、プローブ電 流の制御と含水鉱物の定量分析を試みたのでここに報告する.

名古屋大学博物館設置のSEM-EDXの概要

名古屋大学博物館に設置されている SEM-EDXは、日立ハイテクノロジーズ社の走査型電子顕微鏡 (HITACHI S-3400N) にOxford Instruments社のエネルギー分散型X線分光器(X-Max)を搭載したもの である.SEMの電子銃にはタングステンフィラメントが用いられており、加速電圧は0.3~30 kVの範 囲で変えることができる.真空設定は高真空モード(<1 Pa)と低真空モード(20-270 Paの範囲で可変) が選択でき、EDXにて化学組成の定量を行う場合は、高真空モード(<1 Pa)にて、炭素表面蒸着を行なっ た鏡面研磨試料を測定するのが望ましい.EDXの検出器に入射した特性X線は、コンピューターにイ ンストールされたソフトウェア(Inca)によって解析され、含有元素の定性・定量分析が行われる.

今回, SEMの設定は, ワーキングディスタンス10 mm, 加速電圧15 kV, 対物絞り"2", 分析倍率10000倍, BSE ゲイン "2" とした (表1). 測定条件は, 測定時間40秒, プロセスタイム "5" とした (表1).

SEM setting	5	EDX (Inca) setting				
Accel voltage	15 kV	Analytical method	Analyzer			
Vacume setting	High vacume	Live time	40 seconds			
Working distance	10 mm	Process time	"5"			
Objective aperture setting	"2" Spectrum range		0–20 keV			
Magnification	\times 10000	Channel	2 K			
Gain (in case of BSE)	"2"					
Coating	Carbon					

表1 SEMとEDX (Inca)の設定. Table 1 Settings of SEM and EDX (Inca).

電流値の設定

名古屋大学博物館のSEMは連続測定の場合,エミッション電流安定後にほぼ均等にプローブ電流が 減少し,120分間でプローブ電流が約0.1 nA減少する(図1).組成既知の普通輝石をプローブ電流値1.0 nAでスタンダード登録し,120分の間に同一の普通輝石を3回測定したところ,プローブ電流値の減少 とともにほぼ全ての元素で測定値が減少し,また測定値の合計は約7 wt%減少した(図1,表2).この ようにプローブ電流の変動は測定値に大きな影響を与えるため,正確な定量分析を行うためには,プ ローブ電流値をスタンダード試料測定時と未知試料測定時とで同一にする必要がある(例えば,束田, 2018).そこで今回,SEMのSTG-SIG端子に微小電流計(Keithley 6485)を接続し,プローブ電流値を 手動で制御できるようにした.その上で,含水鉱物の定量分析に最適な電流条件について検討を行った.

まずプローブ電流の安定性について検討するため, 0.2~3.0 nAの間の11ステージ(約0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0 nA)について, それぞれ90秒の間に300回のプローブ電流測定を行った. 各ステージにおける,プローブ電流の平均値,標準偏差,最大値と最小値の差(Pk - Pk)を図2と表3

図1 名古屋大学博物館のSEMの, 120分間のプローブ電流の経時変化. (A), (B), (C) における普通輝石の測定結果 を表2に示す.

表2 図1の (A), (B), (C) におけるプローブ電流値と, 普通輝石の測定値. **Table 2** Analytical results of an augite crystal at the conditions of (A), (B), and (C) in the Fig. 1. Probe currents at each analysis are also shown.

	Rec. Value	(A)	(B)	(C)
SiO ₂ (wt%)	49.05	48.45	46.22	44.68
TiO ₂	1.40	1.29	1.17	1.21
Al_2O_3	9.13	9.06	8.67	8.47
FeO*	9.45	10.55	10.40	9.71
MnO	0.15	-	-	-
MgO	13.12	12.44	11.92	11.41
CaO	15.94	15.56	14.69	14.61
Na ₂ O	2.05	2.82	2.19	2.30
Total	100.14	100.17	95.26	92.39
Probe curr. (nA)		1.00	0.96	0.93

Rec. Value: recommendation value, Probe curr. : probe current. FeO* : total iron as FeO, - : undetected.

に示す. 概してプローブ電流値が大きいときは Pk - Pk と標準偏差が大きいが, 小電流時ほどそれらは 小さく,より安定する傾向がある(図2,表3). 特に約0.2~0.4 nA では, Pk - Pk と標準偏差はともに0.0005 nA以下であり,電流値の揺らぎはほとんどない.

- 図2 0.2~3.0 nAの間の11ステージ(約0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0 nA) において、それぞれ 90秒間にプローブ電流を300回測定した時の、最大値と最小値の差(Pk-Pk)と標準偏差(SD).
- Fig. 2 Difference between maximum and minimum data (Pk–Pk) and standard deviation (SD) of 300 probe current data within 90 seconds, at eleven stages in 0.2–3.0 nA.

表3 0.2~3.0 nA の間の11ステージにおける,90秒間のプローブ電流の平均値,標準偏差,および最大値と最小値の差. **Table 3** Average, standard deviation, and difference between maximum and minimum values of 300 probe current data within 90 seconds, at eleven stages in 0.2–3.0 nA.

Stage	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9		
Avg. probe curr. (nA)	0.199761	0.301941	4.008458	0.503955	0.601880	0.698287	0.800123	0.899839		
SD (nA)	0.000064	0.000064	0.000108	0.000340	0.000237	0.000453	0.000350	0.000460		
Pk-Pk (nA)	0.000283	0.000332	0.000424	0.001721	0.001248	0.001698	0.002170	0.001965		
	•									
Stage	1.0	2.0	3.0							
Avg. probe curr. (nA)	0.999179	2.002110	3.002521	-	Avg. probe cu	urr. : average v	value of probe	e current in 300	seconds	
SD (nA)	0.000544	0.001268	0.001273	SD : standard deviation, Pk-Pk : difference between max. and min. values						
Pk-Pk (nA)	0.002363	0.004283	0.006941							
	-									

次に、プローブ電流の違いが測定値に与える影響を検討するため、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、 1.0、2.0、3.0 nA、各プローブ電流でスタンダード登録を行い、ぞれぞれのプローブ電流条件で、組成 既知のケルスート閃石(表4)の5回繰り返し測定を行った、測定に際し、Si、Al、Fe、Mg、Caについ ては上述のケルスート閃石, TiについてはSrTiO3, Naについては組成既知の曹長石, Kについては組 成既知の正長石を(以上、鉱物名で記した物は天然、化学組成で記したものは人工、以下同様)スタン ダードとして用いた(表4)、測定前にファラデーカップを用いて、プローブ電流を各段階値±0.002 nA になるように調整した、測定値平均と推奨値の比較を図3、4と表5に示す、元素ごとに見ると、プロー ブ電流値が0.2 nAの時を除き、ほとんどのプローブ電流条件において測定値平均と推奨値の差は概ね± 0.5 wt%以内であり、比較的正確と言える(図3).

微量成分元素を考慮しないとすれば、100 wt%から主成分元素測定値の合計を差し引いた値が、含水 鉱物のH2O濃度と一般にみなされる.したがって含水鉱物のH2O量を見積もるためには、各元素の測 定値の正確さだけではなく、測定値合計の正確さも求められる.今回の検討によると、プローブ電流が 小さいほど測定値合計が小さくなる傾向が見られ、またプローブ電流値が0.3~0.6 nAの時に、測定値 合計とその推奨値との差が約0.5 wt%以下となる(図4、表5).したがって、プローブ電流の安定性と 各元素の測定値の正確さ、測定値合計の正確さを鑑みた場合、定量分析を行う際にはプローブ電流値を 0.3~0.4 nAに設定するのが適当と思われる.

	Natural	Synthetic	Synthetic	Synthetic	Natural	Synthetic	Synthetic	Synthetic	Natural	Natural	Natural	Natural
standard specimens	Kaersutite	SiO_2	TiO ₂	Al ₂ O ₃	Ti-magnetite	MnO	MgO	CaSiO ₃	Albite	Orthoclase	Augite	Pyrope
SiO ₂ (wt%)	40.09	100.00	-	-	-	-	-	51.72	68.58	64.85	49.05	40.57
TiO ₂	5.04	-	100.00	-	2.80	-	-	-	-	-	1.40	0.61
Al ₂ O ₃	12.36	-	-	100.00	-	-	-	-	19.51	18.55	9.13	22.36
Cr ₂ O ₃	-	-	-	-	-	-	-	-	-	-	0.02	0.01
FeO*	12.24	-	-	-	96.90	-	-	-	-	-	9.70	17.06
MnO	-	-	-	-	-	100.00	-	-	-	-	0.15	0.41
MgO	12.55	-	-	-	-	-	100.00	-	-	-	13.12	14.82
CaO	11.56	-	-	-	-	-	-	48.28	0.09	0.02	15.94	5.43
Na ₂ O	2.44	-	-	-	-	-	-	-	11.66	1.32	2.05	0.07
K ₂ O	1.17	-	-	-	-	-	-	-	0.15	14.85	-	-
BaO	-	-	-	-	-	-	-	-	0.02	0.42	-	-
H ₂ O	1.97	-	-	-	-	-	-	-	-	-	-	-
Total	99.42	100.00	100.00	100.00	99.70	100.00	100.00	100.00	100.01	100.01	100.56	101.34

表4 スタンダード試料の化学組成の重量%の推奨値.

 Table 4
 Recommendation values (wt%) of the chemical compositions of the standard specimens.

FeO* : total iron as FeO, - : undetected

- 図3 プローブ電流0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0 nAにおける, ケルスート閃石の各元素の5回 測定値平均と推奨値の差.
- Fig. 3 Differences between analytical results and recommendation value of kaersutite analysis, at probe current of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 nA.

- 図4 プローブ電流 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0 nA における, ケルスート閃石の測定値合計(5回測定の平均).
- Fig. 4 Total values of kaersutite analysis (average of 5 analytical data), at probe current of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 nA.

表5 プローブ電流0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, 3.0 nAにおけるケルスート閃石5回測定の, 測定 値合計の平均,標準偏差,相対標準偏差,測定値合計平均と推奨値合計の差(測定値合計平均 - 推奨値合計),お よび相対誤差.

Table 5 Total value (average of 5 analytical data), standard deviation, relative standard deviation, difference between total values of the analysis and the recommendation (analytical value - recommendation value), and relative error of kaersutite analysis, at probe current of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0, and 3.0 nA.

	3.0 nA					2.0 nA					1.0 nA				
	Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$	Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$	Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$
SiO ₂ (wt%)	40.59	0.06	0.16	0.50	1.25	40.58	0.16	0.40	0.49	1.21	40.50	0.08	0.21	0.41	1.01
TiO ₂	5.20	0.04	0.85	0.16	3.17	5.30	0.07	1.23	0.26	5.24	5.34	0.06	1.19	0.30	5.91
Al_2O_3	12.83	0.04	0.27	0.47	3.80	12.70	0.07	0.57	0.34	2.72	12.72	0.16	1.27	0.36	2.91
FeO*	12.88	0.12	0.90	0.64	5.20	12.31	0.06	0.46	0.07	0.58	12.68	0.23	1.78	0.44	3.61
MgO	12.47	0.05	0.38	-0.08	0.64	12.79	0.09	0.71	0.24	1.90	12.87	0.17	1.34	0.32	2.57
CaO	11.71	0.04	0.33	0.15	1.30	11.81	0.07	0.61	0.25	2.18	11.70	0.10	0.85	0.14	1.21
Na ₂ O	2.55	0.05	2.04	0.11	4.51	2.54	0.03	1.19	0.10	4.10	2.57	0.09	3.35	0.13	5.33
K ₂ O	1.16	0.02	1.58	-0.01	0.85	1.17	0.03	2.61	0.00	0.17	1.03	0.03	2.96	-0.14	11.79
total	99.39	0.13	0.13	1.94	1.99	99.20	0.38	0.39	1.75	1.79	99.41	0.31	0.31	1.96	2.01
						•					1				
	0.9 nA					0.8 nA					0.7 nA				
	Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$	Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$	Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$
SiO ₂ (wt%)	39.98	0.13	0.32	-0.11	0.26	40.17	0.19	0.48	0.08	0.19	40.49	0.13	0.31	0.40	1.01
TiO ₂	5.36	0.09	1.61	0.32	6.43	5.33	0.13	2.38	0.29	5.75	5.13	0.05	0.90	0.09	1.87
Al ₂ O ₃	12.82	0.15	1.20	0.46	3.71	12.95	0.14	1.04	0.59	4.77	12.78	0.14	1.13	0.42	3.43
FeO*	11.84	0.14	1.21	-0.40	3.26	13.19	0.23	1.71	0.95	7.80	12.62	0.21	1.65	0.38	3.10
MgO	13.08	0.10	0.73	0.53	4.25	11.81	0.06	0.47	-0.74	5.91	12.79	0.07	0.56	0.24	1.93
CaO	11.68	0.07	0.61	0.12	1.06	11.77	0.12	1.06	0.21	1.80	11.26	0.10	0.88	-0.30	2.61
Na ₂ O	2.39	0.11	4.57	-0.05	2.01	2.61	0.02	0.78	0.17	7.05	2.58	0.06	2.18	0.14	5.82
K ₂ O	1.09	0.05	4 25	-0.08	7.01	1.00	0.05	5.18	-0.17	14 19	1.06	0.05	4 35	-0.11	9.23
total	98 25	0.23	0.23	0.80	0.82	98.83	0.15	0.15	1 38	1 42	98 72	0 44	0 44	1 27	1 31
											1				
	0.6 nA					0.5 nA					0.4 nA				
	0.6 nA Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$	0.5 nA Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$	0.4 nA Avg. (n =5)	SD	RSD	Dif.	$100 \times \epsilon R$
SiO ₂ (wt%)	0.6 nA Avg. (n =5) 39.88	SD 0.23	RSD 0.57	Dif. -0.21	$100 \times \varepsilon R$ 0.53	0.5 nA Avg. (n =5) 40.08	SD 0.08	RSD 0.20	Dif. -0.01	$100 \times \varepsilon R$ 0.03	0.4 nA Avg. (n =5) 40.89	SD 0.18	RSD 0.45	Dif.	$100 \times \varepsilon R$ 2.00
SiO ₂ (wt%) TiO ₂	0.6 nA Avg. (n =5) 39.88 5.31	SD 0.23 0.09	RSD 0.57 1.69	Dif. -0.21 0.27	$100 \times \varepsilon R$ 0.53 5.44	0.5 nA Avg. (n =5) 40.08 5.30	SD 0.08 0.14	RSD 0.20 2.62	Dif. -0.01 0.26	$100 \times \varepsilon R$ 0.03 5.24	0.4 nA Avg. (n =5) 40.89 5.28	SD 0.18 0.15	RSD 0.45 2.89	Dif. 0.80 0.24	$100 \times \varepsilon R$ 2.00 4.84
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃	0.6 nA Avg. (n =5) 39.88 5.31 12.82	SD 0.23 0.09 0.22	RSD 0.57 1.69 1.75	Dif. -0.21 0.27 0.46	100 × εR 0.53 5.44 3.74	0.5 nA Avg. (n =5) 40.08 5.30 12.18	SD 0.08 0.14 0.10	RSD 0.20 2.62 0.85	Dif. -0.01 0.26 -0.18	100 × εR 0.03 5.24 1.42	0.4 nA Avg. (n =5) 40.89 5.28 12.27	SD 0.18 0.15 0.04	RSD 0.45 2.89 0.36	Dif. 0.80 0.24 -0.09	100 × εR 2.00 4.84 0.76
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO*	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80	SD 0.23 0.09 0.22 0.23	RSD 0.57 1.69 1.75 1.77	Dif. -0.21 0.27 0.46 0.56	100 × εR 0.53 5.44 3.74 4.61	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87	SD 0.08 0.14 0.10 0.15	RSD 0.20 2.62 0.85 1.14	Dif. -0.01 0.26 -0.18 0.63	$100 \times \varepsilon R$ 0.03 5.24 1.42 5.12	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12	SD 0.18 0.15 0.04 0.19	RSD 0.45 2.89 0.36 1.53	Dif. 0.80 0.24 -0.09 -0.12	$100 \times \varepsilon R$ 2.00 4.84 0.76 0.95
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10	SD 0.23 0.09 0.22 0.23 0.12	RSD 0.57 1.69 1.75 1.77 0.99	Dif. -0.21 0.27 0.46 0.56 -0.45	100 × εR 0.53 5.44 3.74 4.61 3.55	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66	SD 0.08 0.14 0.10 0.15 0.10	RSD 0.20 2.62 0.85 1.14 0.76	Dif. -0.01 0.26 -0.18 0.63 0.11	100 × εR 0.03 5.24 1.42 5.12 0.86	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33	SD 0.18 0.15 0.04 0.19 0.09	RSD 0.45 2.89 0.36 1.53 0.70	Dif. 0.80 0.24 -0.09 -0.12 -0.22	$100 \times \varepsilon R$ 2.00 4.84 0.76 0.95 1.72
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37	SD 0.23 0.09 0.22 0.23 0.12 0.06	RSD 0.57 1.69 1.75 1.77 0.99 0.50	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19	100 × εR 0.53 5.44 3.74 4.61 3.55 1.63	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50	SD 0.08 0.14 0.10 0.15 0.10 0.08	RSD 0.20 2.62 0.85 1.14 0.76 0.69	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26	SD 0.18 0.15 0.04 0.19 0.09 0.15	RSD 0.45 2.89 0.36 1.53 0.70 1.36	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30	$100 \times \epsilon R$ 2.00 4.84 0.76 0.95 1.72 2.61
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11	$100 \times \epsilon R$ 0.53 5.44 3.74 4.61 3.55 1.63 4.43	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51	SD 0.18 0.04 0.19 0.09 0.15 0.05	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07	100 × εR 2.00 4.84 0.76 0.95 1.72 2.61 2.95
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO ⁴ MgO CaO Na ₂ O K ₂ O	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14	$100 \times \epsilon R$ 0.53 5.44 3.74 4.61 3.55 1.63 4.43 11.62	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08	100 × εR 2.00 4.84 0.76 0.95 1.72 2.61 2.95 7.01
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07 0.64	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43	$100 \times \epsilon R$ 0.53 5.44 3.74 4.61 3.55 1.63 4.43 11.62 0.44	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	100 × εR 2.00 4.84 0.76 0.95 1.72 2.61 2.95 7.01 0.32
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07 0.64	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43	$\begin{array}{c} 100 \times \varepsilon \mathbb{R} \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \end{array}$	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64	$\begin{array}{c} 100 \times \epsilon \mathbb{R} \\ 0.03 \\ 5.24 \\ 1.42 \\ 5.12 \\ 0.86 \\ 0.48 \\ 1.97 \\ 5.64 \\ 0.66 \end{array}$	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	100 × €R 2.00 4.84 0.76 0.95 1.72 2.61 2.95 7.01 0.32
$\begin{array}{c} SiO_2 \left(wt\%\right)\\ TiO_2\\ Al_2O_3\\ FeO*\\ MgO\\ CaO\\ Na_2O\\ K_2O\\ total \end{array}$	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07 0.64	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43	$\begin{array}{c} 100 \times \varepsilon \mathbb{R} \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \end{array}$	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	100 × €R 2.00 4.84 0.76 0.95 1.72 2.61 2.95 7.01 0.32
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5)	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07 0.64 SD	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 RSD	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43 Dif.	$100 \times \epsilon R$ 0.53 5.44 3.74 4.61 3.55 1.63 4.43 11.62 0.44 $100 \times \epsilon R$	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5)	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64 Dif.	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66 100 × \epsilon R	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ e R \\ 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total SiO ₂ (wt%)	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36	SD 0.23 0.09 0.22 0.12 0.06 0.05 0.07 0.64 SD 0.12	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 RSD 0.31	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73	$100 \times \epsilon R$ 0.53 5.44 3.74 4.61 3.55 1.63 4.43 11.62 0.44 $100 \times \epsilon R$ 1.83	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD 0.38	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64 Dif. -0.68	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66 100 × \epsilon R 1.69	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ e R \\ 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total SiO ₂ (wt%) TiO ₂	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36 5.50	SD 0.23 0.09 0.22 0.12 0.06 0.05 0.07 0.64 SD 0.12 0.12	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 RSD 0.31 2.93	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73 0.46	$ \begin{array}{r} 100 \times \epsilon R \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \\ \end{array} $ $ \begin{array}{r} 100 \times \epsilon R \\ 1.83 \\ 9.13 \\ \end{array} $	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41 5.17	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD 0.38 0.30	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97 5.70	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64 Dif. -0.68 0.13	$ \begin{array}{r} 100 \times \epsilon R \\ 0.03 \\ 5.24 \\ 1.42 \\ 5.12 \\ 0.86 \\ 0.48 \\ 1.97 \\ 5.64 \\ 0.66 \\ \end{array} $ $ \begin{array}{r} 100 \times \epsilon R \\ 1.69 \\ 2.66 \\ \end{array} $	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ \epsilon R \\ \hline 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO2 (wt%) TiO2 Al2O3 FeO* MgO CaO Na2O K2O total	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36 5.50 12.93	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07 0.64 SD 0.12 0.12 0.12 0.16 0.13	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 0.66 RSD 0.31 2.93 1.04	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73 0.46 0.57	$ \begin{array}{r} 100 \times \varepsilon R \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \\ \end{array} $ $ \begin{array}{r} 100 \times \varepsilon R \\ 1.83 \\ 9.13 \\ 4.61 \\ \end{array} $	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41 5.17 12.57	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD 0.38 0.30 0.22	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97 5.70 1.76	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64 Dif. -0.68 0.13 0.21	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66 100 × \epsilon R 1.69 2.66 1.72	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ \epsilon R \\ \hline 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO*	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36 5.50 12.93 12.39	SD 0.23 0.09 0.22 0.12 0.06 0.05 0.07 0.64 SD 0.12 0.13 0.13	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 0.66 0.66 0.31 2.93 1.04 3.22	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73 0.46 0.57 0.15	$100 \times \epsilon R$ 0.53 5.44 3.74 4.61 3.55 1.63 4.43 11.62 0.44 100 × \epsilon R 1.83 9.13 4.61 1.21	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41 5.17 12.57 11.27	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD 0.38 0.30 0.22 0.37	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97 5.70 1.76 3.28	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64 Dif. -0.68 0.13 0.21 -0.97	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66 100 × \epsilon R 1.69 2.66 1.72 7.96	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ \epsilon R \\ \hline 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36 5.50 12.93 12.39 12.66	SD 0.23 0.09 0.22 0.12 0.06 0.05 0.07 0.64 SD 0.12 0.13 0.14 0.12 0.13 0.40 0.18	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 0.66 0.66 0.31 2.93 1.04 3.22 1.43	Dif. -0.21 0.27 0.46 0.56 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73 0.46 0.57 0.15 0.11	$\begin{array}{c} 100 \times \epsilon \mathbb{R} \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \\ \hline 100 \times \epsilon \mathbb{R} \\ \hline 1.83 \\ 9.13 \\ 4.61 \\ 1.21 \\ 0.89 \\ \end{array}$	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41 5.17 12.57 11.27 11.86	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD 0.38 0.30 0.22 0.37 0.25	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97 5.70 1.76 3.28 2.14	Dif. -0.01 0.26 -0.18 0.63 0.11 -0.06 -0.05 -0.07 0.64 Dif. -0.68 0.13 0.21 -0.97 -0.69	$100 \times \epsilon R$ 0.03 5.24 1.42 5.12 0.86 0.48 1.97 5.64 0.66 100 × \epsilon R 1.69 2.66 1.72 7.96 5.51	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ \epsilon R \\ 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36 5.50 12.93 12.39 12.66 11.26	SD 0.23 0.09 0.22 0.12 0.06 0.05 0.07 0.64 SD 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	RSD 0.57 1.69 1.75 1.77 0.99 0.50 2.04 6.66 0.66 0.31 2.93 1.04 3.22 1.43 3.22	Dif. -0.21 0.27 0.46 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73 0.46 0.57 0.45 0.57 0.45 0.57 0.45 0.56 -0.59 -0.59 -0.59 -0.45 0.4	$ \begin{array}{c} 100 \times \epsilon R \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \\ \end{array} $ $ \begin{array}{c} 100 \times \epsilon R \\ 1.83 \\ 9.13 \\ 4.61 \\ 1.21 \\ 0.89 \\ 2.56 \\ \end{array} $	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41 5.17 12.57 11.27 11.86 12.10	SD 0.08 0.14 0.10 0.15 0.10 0.08 0.13 0.05 0.29 SD 0.38 0.30 0.22 0.37 0.25 0.16	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97 5.70 1.76 3.28 2.14 1.30	Dif. -0.01 0.26 -0.18 0.63 0.011 -0.06 -0.05 -0.07 0.64 Dif. -0.68 0.13 0.21 -0.69 0.54	$\begin{array}{c} 100 \times \varepsilon R \\ 0.03 \\ 5.24 \\ 1.42 \\ 5.12 \\ 0.86 \\ 0.48 \\ 1.97 \\ 5.64 \\ 0.66 \\ \hline 100 \times \varepsilon R \\ \hline 1.69 \\ 2.66 \\ 1.72 \\ 7.96 \\ 5.51 \\ 4.71 \\ \hline 4.71 \end{array}$	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.04 0.19 0.09 0.15 0.05 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \times \epsilon R \\ 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$
SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O K ₂ O total SiO ₂ (wt%) TiO ₂ Al ₂ O ₃ FeO* MgO CaO Na ₂ O	0.6 nA Avg. (n =5) 39.88 5.31 12.82 12.80 12.10 11.37 2.55 1.03 97.88 0.3 nA Avg. (n =5) 39.36 5.50 12.93 12.39 12.66 11.26 2.44	SD 0.23 0.09 0.22 0.23 0.12 0.06 0.05 0.07 0.64 SD 0.12 0.12 0.13 0.40 0.14 0.15 0.12 0.13 0.48 0.12 0.18 0.12 0.05	RSD 0.57 1.69 0.77 0.79 0.70 2.04 6.66 0.60 0.31 2.93 1.04 3.22 1.43 1.10 2.23	Dif. -0.21 0.27 0.46 -0.45 -0.45 -0.19 0.11 -0.14 0.43 Dif. -0.73 0.46 0.57 0.15 0.11 -0.30 0.00	$\begin{array}{c} 100 \times \varepsilon R \\ 0.53 \\ 5.44 \\ 3.74 \\ 4.61 \\ 3.55 \\ 1.63 \\ 4.43 \\ 11.62 \\ 0.44 \\ \hline 100 \times \varepsilon R \\ 1.83 \\ 9.13 \\ 4.61 \\ 1.21 \\ 0.89 \\ 2.56 \\ 0.16 \\ \hline \end{array}$	0.5 nA Avg. (n =5) 40.08 5.30 12.18 12.87 12.66 11.50 2.39 1.10 98.09 0.2 nA Avg. (n =5) 39.41 5.17 11.257 11.27 11.86 12.10 2.53	SD 0.08 0.14 0.10 0.15 0.10 0.13 0.05 0.29 SD 0.38 0.30 0.22 SD 0.38 0.30 0.22 0.37 0.25 0.16 0.12	RSD 0.20 2.62 0.85 1.14 0.76 0.69 5.54 4.60 0.30 RSD 0.97 5.70 1.76 2.14 1.30 4.57	Dif. -0.01 0.26 -0.18 0.63 0.01 -0.05 -0.07 0.64 Dif. -0.68 0.13 0.21 -0.97 0.54 0.09	$\begin{array}{c} 100 \times \varepsilon R \\ 0.03 \\ 5.24 \\ 1.42 \\ 5.12 \\ 0.86 \\ 0.48 \\ 1.97 \\ 5.64 \\ 0.66 \\ \hline 100 \times \varepsilon R \\ \hline 1.69 \\ 2.66 \\ 1.72 \\ 7.96 \\ 5.51 \\ 4.71 \\ 3.52 \\ \end{array}$	0.4 nA Avg. (n =5) 40.89 5.28 12.27 12.12 12.33 11.26 2.51 1.09 97.76	SD 0.18 0.15 0.04 0.19 0.09 0.15 0.05 0.30	RSD 0.45 2.89 0.36 1.53 0.70 1.36 2.07 4.55 0.30	Dif. 0.80 0.24 -0.09 -0.12 -0.22 -0.30 0.07 -0.08 0.31	$\begin{array}{c} 100 \ \times \ \epsilon R \\ 2.00 \\ 4.84 \\ 0.76 \\ 0.95 \\ 1.72 \\ 2.61 \\ 2.95 \\ 7.01 \\ 0.32 \end{array}$

0.31 0.08 Avg. : average of 5 analytical data, SD : standard deviation, RSD : relative standard deviation,

 $Dif.: difference \ between \ total \ values of \ the \ analysis \ and \ the \ recommendation \ (analytical \ value - \ recommendation \ value), \ \epsilon R: relative \ error.$

0.08

FeO* : total iron as FeO.

total

97.53

0.30

スタンダード試料の選択

1.38

1.43 -1.39

1.42

96.06

一般に、スタンダード試料と未知試料の化学組成が近い方が、より正確な定量ができるとされてい る.本章では、未知試料と化学組成が大きく異なるスタンダード試料を用いた場合と、組成が近いスタ ンダード試料を用いた場合を比較し、その適性について検討する.ここでは、前章のケルスート閃石に ついて当博物館のSEM-EDXで連続して5回測定し, 推奨値との比較を行う.

1. 未知試料と化学組成が大きく異なるスタンダード試料

ここでは、化学組成が既知のSiO₂, TiO₂, Al₂O₃, チタン磁鉄鉱、MgO, CaSiO₃, 曹長石, 正長石を, それぞれSi, Ti, Al, Fe, Mg, Ca, Na, Kのスタンダードとし(表4), プローブ電流値を0.4 nAとし て検討を行った. 各測定前にファラデーカップを用いて、プローブ電流値を0.4 ± 0.002 nA になるよう に調整した. 5回測定の平均値、標準偏差、相対標準偏差, 推奨値と平均値の絶対誤差と誤差率、測定 平均値とスタンダード化学組成推奨値の差を図5と表6a に示す. 全ての元素で標準偏差は約0.3 wt%以 下,相対標準偏差は約5%以下であり、データの再現性は良い.一方,各元素の平均値と推奨値の絶対 誤差は、SiO₂, Al₂O₃, MgO, FeO で 0.5 wt%以上,平均値合計と推奨値合計の絶対誤差は2.51 wt%であり、 確度はよくない. また誤差率は、全ての元素で2%以上であった.

2. 未知試料と化学組成が近いスタンダード試料

次に、ケルスート閃石と比較的組成の近いスタンダード試料を用いて検討を行った. Si, Al, Caに ついては普通輝石, TiについてはSrTiO₃, Fe, Mgについてはパイロープ, Naについては曹長石, Kに ついては正長石をスタンダードとし(表4), プローブ電流は0.4 nAとした. 各測定前にファラデーカッ プを用いて、プローブ電流を0.4 ± 0.002 nAになるように調整した. 5回測定の平均値, 標準偏差, 相 対標準偏差, 推奨値と平均値の絶対誤差と誤差率, 測定平均値とスタンダード化学組成推奨値の差を図 5と表6bに示す. 全ての元素で標準偏差は0.3 wt%以下, 相対標準偏差は概ね3%以下であり, データの 再現性は良い. 各元素の平均値と推奨値の絶対誤差は0.5 wt% 以下で, 測定値合計は推奨値と一致する (図5). 誤差率については, 低濃度の元素は高いが, 濃度が10 wt%以上の元素については概ね3%以下

図5 (a) ケルスート閃石を化学組成が大きく異なるスタンダードを用いて5回測定した場合の標準偏差と、測定値平均と推奨値の絶対誤差.データを表6aに示す.(b)ケルスート閃石を化学組成が近いスタンダードを用いて5回測定した場合の標準偏差と、測定値平均と推奨値の絶対誤差.データを表6bに示す.

Fig. 5 (a) Standard deviation and absolute error of kaersutite analysis (average of 5 analytical data), with standard specimens having significantly different chemical compositions from the kaersutite. The analytical data are shown in Table 6a. (b) Standard deviation and absolute error of kaersutite analysis (average of 5 analytical data), with standard specimens having similar chemical composition to the kaersutite. The analytical data are shown in Table 6b. SD: Standard deviation, ε : absolute error.

- 表6 ケルスート閃石を5回測定した場合の、測定値の平均、標準偏差、相対標準偏差、測定値の絶対誤差、使用したスタンダード試料、および測定値平均とスタンダード試料推奨値の差.(a)ケルスート閃石と化学組成が大きく異なるスタンダードを用いた場合.(b)ケルスート閃石と化学組成が近いスタンダードを用いて測定した場合.スタンダード試料の化学組成は、表4を参照.
- **Table 6**Average of 5 analytical data, standard deviation, relative standard deviation, absolute error, relative error, standard
specimens, and difference between the analytical results and the recommendation values of the standard specimens of
kaersuite analysis. (a) Analytical results with the standard specimens having significantly different chemical compositions
from the kaersuite. (b) Analytical results with the standard specimens having similar chemical composition to the
kaersuite. See Table 4 for the recommendation values of each standard specimen.

(a)		Avg. (n = 5)	SD	RSD	ε	$100 \times \epsilon R$	Standard	Dif. (wt%)
	SiO ₂ (wt%)	40.98	0.33	0.81	0.89	2.22	SiO ₂	59.91
	TiO ₂	5.39	0.15	2.80	0.35	6.87	TiO ₂	94.96
	Al_2O_3	12.87	0.16	1.27	0.51	4.09	Al_2O_3	87.64
	FeO*	12.77	0.25	1.93	0.53	4.33	Ti-magnetite	65.54
	MgO	13.18	0.11	0.83	0.63	5.05	MgO	87.45
	CaO	11.26	0.09	0.79	0.30	2.56	CaSiO ₃	36.72
	Na ₂ O	2.58	0.14	5.38	0.14	5.66	Albite	9.22
	K ₂ O	1.11	0.05	4.73	0.06	5.13	Orthoclase	13.68
	Total	100.14	0.50	0.50	2.51	2.57		

(b)		Avg. (n = 5)	SD	RSD	ε	$100 \times \epsilon R$	Standard	Dif. (wt%)
	SiO ₂ (wt%)	39.90	0.08	0.20	0.19	0.47	Augite	8.96
	TiO ₂	5.45	0.16	2.90	0.41	8.17	SrTiO ₃	38.49
	Al_2O_3	12.63	0.07	0.56	0.27	2.20	Augite	3.23
	FeO*	11.96	0.20	1.67	0.28	2.31	Pyrope	4.35
	MgO	12.13	0.05	0.41	0.42	3.36	Pyrope	2.27
	CaO	11.78	0.12	0.99	0.22	1.89	Augite	4.38
	Na ₂ O	2.67	0.04	1.39	0.23	9.59	Albite	9.22
	K_2O	1.10	0.08	6.98	0.07	5.64	Orthoclase	13.68
	Total	97.63	0.26	0.27	0.00	0.00		

Avg. : average of 5 analytical data, SD : standard deviation,

RSD : relative standard deviation, ε : absolute error, εR : relative error,

Dif. : difference between recommendation value of standard and analytical result.

である.したがって以上の結果より,未知試料とスタンダード試料の組成が近い方が,より確度の高い 定量結果が得られることが示された.

まとめ

名古屋大学博物館に設置されている SEM-EDX について,プローブ電流制御と含水鉱物の定量分析を 試みた. 0.2~3.0 nAの間で,複数の電流条件で90秒の間に300回の電流測定を行ったところ,電流条 件が約0.5~3.0 nAの時は約0.002 nA以上の振れ幅があったが,約0.2~0.4 nAでは電流値の揺らぎはほ とんどなくなり電流値は極めて安定した.また,プローブ電流の違いが測定値に与える影響を検討する ため,0.2~3.0 nAの間の複数の電流条件でスタンダード登録を行い,ぞれぞれのプローブ電流条件で 組成既知のケルスート閃石の測定を行ったところ,ほとんどのプローブ電流条件において測定値は比較 的正確であった.一方,測定値合計は,プローブ電流が小さいほど測定値合計が小さくなる傾向が見ら れ,また推奨値合計との差は0.3~0.6 nAの時に約0.5 wt%以下となった.したがって上記を鑑みた場合, 定量分析を行う際には、プローブ電流値を0.3~0.4 nA に設定するのが適切と思われる.

未知試料と化学組成が大きく異なるスタンダード試料を用いた場合と、組成が近いスタンダード試料

を用いた場合とで、ケルスート閃石の測定値を比較した.未知試料と化学組成が大きく異なるスタン ダード試料を用いた場合、データの再現性は良いが確度はよくない.一方、組成が近いスタンダード試 料を用いた場合、データの再現性はよく、また各元素の平均値と推奨値の絶対誤差は0.5 wt% 以下で、 測定値合計は推奨値と一致する.したがって、未知試料とスタンダード試料の組成が近い方が、より確 度の高い定量結果が得られることが示された.

今回は主成分元素の定量に主眼をおき、微量成分元素については考慮しなかった.しかし厳密な議論 を行うためには、微量成分元素についても定量を行うのが望ましい.名古屋大学博物館のSEM-EDXで は、今回の条件では0.5 wt%以下の元素は定量できないが、測定時間を長くすればEDXの検出限界濃度 を下げることができる(例えば、東田、2018).微量成分元素の定量分析については、今後の課題である.

謝辞

本検討に際し,平成29年度名古屋大学博物館館長裁量経費を使用した.名古屋大学博物館の吉田英 ー教授には,本稿執筆において,種々の有益な助言をいただいた.元名古屋大学博物館の奥語節生氏 には,試料の鏡面研磨薄片を作成していただいた.株式会社日立ハイテクノロジーズの二村和孝氏と Oxford Instruments株式会社の森田博文氏には,SEM-EDXの設定などについて,種々ご教示いただいた. 以上の各位に心から感謝する次第である.

引用文献

- 川野良信・管野稔洋・三浦亜由美(2010) SEM-EDXによる珪酸塩鉱物の定量化学分析. *地球環境研究*, **12**, 99–107.
- 木村純一(1994) エネルギー分散型X線マイクロアナライザーによる火山ガラスの定量化学分析. 福島大学教 育学部論集理科報告, 54号, 19–31.
- 小暮岳実・清水隆一・川野良信(2014) SEM-EDSによる火山ガラスの定量分析と問題点. *地球環境研究*, 16, 9–19.
- 大場 司・林 信太郎・鈴木真悟・近藤 梓・葛巻貴大・緒方武幸(2011)秋田大学における造岩鉱物科学組成分析: 教育文化学部 SEM-EDX と工学資源学部 WD-EPMA の定量分析値の整合性について. 秋田大学大学院工学資 源学研究科研究報告, 32 号, 1-6.
- 佐野貴司(2003) 走査型電子顕微鏡 エネルギー分散型分析装置を用いた鉱物および珪酸塩ガラス中の元素の 定量 – . *富士常葉大学研究紀要*, **3**号, 251–270.
- 東田和弘(2018)名古屋大学博物館のSEM-EDXによる無水珪酸塩鉱物化学組成の定量分析. 名古屋大学博物 館報告, 34号, 1–10.