論文

地下花崗岩体の変質とその形態
—産総研岡山応力測定用深部花崗岩コア試料の変質を例に—

吉田英一*1・西本昌司*2・長秋雄*3・山本健志*4・勝田長貴*5

要旨

地下における花崗岩の変質プロセスを解明することを目的に、岡山市で掘削されたボーリングコアの深さ約100mまでについて、割目帯近傍における花崗岩中の変質鉱物の変質状態を調べた。この花崗岩は、粗粒の砂状、正長石、斜長石、黒雲母などからなり、割目帯に沿って水-岩石反応により形成されたと思われる変質層が見られる。今回、地下40-50m付近の変質帯を伴う割目帯を詳細に観察した結果、斜長石の結晶帯化と黒雲母の結晶化が観察され、また、割目帯内では斜長石の結晶化が観察された。一方で、カリ長石に変質はほとんど認められない。これら変質鉱物の変質状態の組み合わせは、マグマ貫入直後の冷却に伴う熱水変質と、割目帯から浸透した比較的低い温度による変質の2ステージのプロセスによるものと考えられる。このような段階的プロセスは、地下花崗岩の酸化変化と化学組成変化の解釈に広く適用し得るものと思われる。また、変質鉱物を用いた変質プロセスの解析手法は、地下花崗岩の水-岩石反応の解明と地下環境の理解において有効であると考えられる。

Key words: 花崗岩 granitic rock, 変質 alteration, 水-岩石反応 water-rock interaction, 地質環境 geological environment

1. はじめに

日本の地下環境を理解するにあたって、花崗岩中の岩漿-地下水反応とそれに伴う変質プロセスの解明は、岩石の変質・変化の観点だけではなく、石油や液化天然ガスの地下埋蔵や放射性廃棄物の処分など、長期的な地下空間利用の地域地質学的观点からも把握しておくべき重要な課題である。とくに地下深部岩体の変質帯は、割目（帯）や断層などの「水みち」となる部分の近傍で形成され、その後の地下水の水質形成にも影響を及ぼす。また、それらの変質挙動、微小割れや溶解による微小空隙の形成により、地下空洞削開後の力学的強度の低下や、また地下

空洞掘削に伴う微生物反応も含めた酸化還元反応の促進など、地下環境の状態変化にも著しく関与する。したがって、大深度地下利用に際して、まずは地下深部にまで及ぶ変質がどのようにして生じたのかを知ることは、応用地質学に関する環境地質学的な必須の研究課題と言える。しかしながら、地下深部花崗岩中の「水みち」と伴う変質プロセスについては、その組織変化と化学組成の二次的な変化状態、さらには地下空洞掘削後に生じると思われる変化や影響に関して、ほとんど具体的な知識を有していないのが実状である。

このような背景のもと、岡山市周辺の花崗岩において、地下深部の応力測定を行う目的で掘削されたボーリングコアを対象に、花崗岩体内部で生じる花崗岩中の変質状態の形成および変遷について調査を行う機会を得た。本論では、これら変質状態の観察・分析結果から示される、地下深部花崗岩体中の変質の進行プロセスに関する調査結果を報告するとともに、本地域での花崗岩体深部における変質の特徴を議論する。

2. 地質概要

西南日本の山陽盆地内部には花崗岩類が広く分布してい
る。これらの花崗岩類は、ももに粗粒または中粒の花崗岩〜花崗斑岩類である。Rb/Sr全岩年代は84.0±3.7Maの白亜紀後期であり、超軟質帯と考えられる堆積岩と高田流紋岩類を貫いている。高田流紋岩類の厚さが最大でも2.000mを超える程度であることが確認されており、これら花崗岩類は洋底産入型と考えられている。花崗巌系としては、ISHI-HARA(1977)のチタン鉄亜系、CHAPPELL & WHITE(1974)の1-タイプにあたり、REEパターンのEu異常が弱いのが特徴である。

今回調査を行った、岡山市周辺で石材向けに採掘されているものは万花花崗岩と呼ばれ、ピンク色の花崗岩が特徴的な岩石である。渡辺ほか(1979)は、岡山県の南部の花崗岩類を4タイプに分類したが、本試料はそのII型花崗岩に相当する。また細粒相と、晶層やペラマトイトを伴う細粒相が認められ、前者が後者に貫かれている。ISHI-HARA(2005)は、細粒相と細粒相が分化し酸化状態で固結したと考えた。また、岩体内部には流紋岩へ輝緑岩の変質が確認されている。

3. 岩石コア採取深度および実施内容

本研究で使用した試料は、岡山市内の中柱高46.5m地点で掘削された深度100mまでの径58cmポーリングコアについてである。岩相は、粗粒径5cm程度の角閃石黒雲母花崗岩であり、主成分鉱物として、斜長石、カリ長石、石英、黒雲母、角閃石、副成分鉱物として輝石類、輝亜石、ジルコン、モナズ石、輝石類、不透明鉱物が含まれる。また、細粒花崗岩が含まれている。

このポーリングコアの地表から深度100mまでには、水酸化鉄で埋められた高角度の割目を切って低角度の割目が多く確認されており、藤野(2006)は不動荷重の除荷(応力解放)によるシスチュレーションと考えている。これは地下水の浸透や「水みち」となり、そこから変質が進むと推察される。2005年30.30〜40.95m付近の割目帯に沿って帯状に花崗岩が変質していることから、この強い変質帯および新鮮石材への変質特性に注目し、地下花崗岩の変質プロセスの解析を行った。

調査・分析では、この割目帯周辺のポーリングコアより、変質帯全体に応じて4試料を採取し、新鮮岩石からの状態変化に関する調査を行った。また深度81.5m付近の新鮮な部分の岩石試料を、比較検討のために採取した。以下にこれら5試料(コアをカットしたものを研磨したもの)の肉眼的特徴を示す。また、各試料の写真については後述の元素分布測定結果とともに図1-1に示した。

OG-01: 深度81.5mから採掘された新鮮花崗岩であり、斜長石は白色半透明で、カリ長石が灰鉄ピンク色を呈する。

OG-02: 深度44.0m、斜長石が白帯するか淡緑色に見えるものがある。カリ長石は新鮮花崗岩に比べ赤味が若干濃い。

OG-03: 深度43.0m、OG-02に比べ、斜長石が褐色化するものが認められる。また岩石中に微小割目が形成されている。

OG-04: 深度41.7m、割目帯内にあり、連続性の良い微小割目が試料全体に発達する。水酸化鉄とと思われる茶褐色の沈殿が微小割目を充填する形で見られ、それらと比較が困難なほど石英や斜長石が茶褐色に染まっている。

OG-05: 深度41.3m、割目帯内にあり、OG-04より連続性の良い割目が発達する。石英は茶褐色に見える部分がある。斜長石は淡緑色となり、粒子境線がわずかにいくぶん変質が進んでいる。

本研究では、これらの花崗岩の変質に伴う組織および組成変化を把握するために、次の方法によって観察および分析調査を行った。

1) 母岩-変質帯の空隙率測定
2) 岩石薄片による微構造観察(微視的空隙を同定するために赤外レジオンを注入し岩石薄片を併せて作成した)
3) 元素移動の状態を定量的に把握するための全岩X線SAXF(縦軸)の組成分析
4) 変質を伴う元素移動状態を空間的に把握するためのX線分析(縦軸)の組成分析
5) 乾燥後と蒸発後の二酸化物を同定するための粉末X線回折(XRD)の組成分析

3.1 空間分布測定

変質に伴う岩石-水反応によって、造岩鉱物が溶解し、あるいは二次鉱物が沈殿、晶出することで空隙率が変化することとはすでに知られている。岩石の空隙率は、地下水(熱水)の移動(透水性)にも重要な役割を果たす。このような観点から、新鮮岩石試料、変質試料および1剖面の各試料について、変質や破壊に伴う空隙率の変化を見るために、水酸化鉄による空隙率の測定を行った。測定には、長さ5cm以上のコア試料を岩石カッターで切断した後に用いた。以上は、100℃で3日間乾燥させ、乾燥重量を測定したのち、デシケータ内で脱水を約2時間間測定させ、脱水重量を測定し、有効空隙率を求めた。

3.2 全岩化学組成

主成分組成がどのように変化する(したのか)定量的に把握するために、全岩X線分析法(XRF)により各試料について分析した。分類には粉末試料7gと四極酸リチウム6gを混合・焼結したガラスビードを作成しXRF用試料とした。

検量線作成にあたり、主成分元素は産業技術総合研究所が作成した岩石標準試料を用いた。定量にはラジウム管を装着したShimadzu SRF-1200Bを用い、印加電圧と管電流はそれぞれ40kV, 70mAで測定した。また、物質の影響を考慮するために、モード組成を西本(1996)の方法で測定した。
3.3 走査型X線分析微細像(SXAM)による変質部の元素分布分析

走査型X線分析微細像（Scanning X-ray Analytical Microscope, SXAM, 昭和製作所XGT-2000V）は、岩石全体の元素濃集分布を把握するために有効である。SXAMは、X-線走査試料の走査試料に、X線ガイドチューブ（X-ray Guide Tube, XGT）で絞ったX線を照射し、試料から放射された蛍光X線を計測することによって、蛍光X線強度の走査画像と蛍光X線エネルギー・スペクトルを得ることができる装置である。この分析装置の特徴は、大型の試料を試料台に設置でき、最大40×20cm²の大きさに
対して空間分解能数100 μm的主要元素分布画像を取得することが可能なのである。本研究では、これらの手法を用いて、変質に伴う元素移動（変化）の状態を知るため、コア試料断面を空間分解能100 μmで測定した。

3.4 顕微鏡による観察
地下深部花崗岩の変質形成プロセスは、基本的に大小の水みちを育む側膨張形状と、それを介した地下水（あるいは熱水）との反応に伴う二次的な鉱物の生成や鉱物の変成によって、岩石内部の組織や構造、鉱物組成が変化することができる。したがって、それぞれの試料について鉱物薄片を作成し、光学顕微鏡により造岩鉱物の状態や微小構造を観察した。これらの観察において、花崗岩形成後の一連の変化に注目した。

3.5 粉末X線回折（XRD）による鉱物同定分析
個々の造岩鉱物がどのように変質しているのかを知るためには、鉱物粒子内に生じている細脈等の変質鉱物の同定を行い、その変質状態を知る必要がある。しかし、顕微鏡観察や元素分析だけでは鉱物同定は必ずしも不可能で、その鉱物の識別や分析が難しい。そこで、造岩鉱物ごとに粉末X線回折（XRD）を行った。試料が含まれているため、各試料の斜長石、黒雲母およびカリ長石部分を、ダイヤモンドピットを取り付けた小型ドリルで割りだし、その粉末をエチルアルコールで懸濁させ、グラス板に塗布した後、X線回折の測定を試みた。X線回折装置は理学電気製MultiFlexで、Cu管（Niフィルター）を用いて、40 kV、20mAで測定した。

4. 結 果

4.1 定数

定数測定結果を図-1に示した。本ポーリングコアの深度81.5mの新鮮母岩（OG-01）の定数は11.1%であり、土岐花崗岩の稜岩部のとほぼ同じであった。変質部（OG-02、03）12.1-16.1%、割れ部（OG-04、05）は24.4%、定数率は割れ部に近づくほど増加する傾向がある。これは、後述するIg.Loss（強磁性量）の変化傾向と一致するものである。

4.2 全岩化学組成

スケールX線分析（XRF）による主成分分析結果を表-1および図-2に示した。割れ部から構成的変化が見られるのがCaO、MgO、Na2Oであり、コンクリート耐で減少する傾向が認められる。Ig.Loss（強磁性量）は割れ部に近いほど増加する傾向が認められ、変成度は認められないので、Ig.Lossはほとんど変化すると考えは妥当な支えようである。つまり、割れ部に近いほど永年変や水酸化物が多くなると解釈される。OG-03でNa2OとCaOが増加し、K2Oが減少しているのは、試料中の斜長石とカリ長石の量比の変化（斜長石が増加しカリ長石が減少）のためと考えられる。SiO2またはAl2O3に特異すべき変化はない。

4.3 SXAM元素分析

本ポーリングコアから取り出した5試料のSXAMの反応マップを図-1右側に示した。変質の進行に伴い、Feの分布が岩石全体に広がっていることがわかった。とくに割れ部では割れ部だけでなく石英や斜長石中でもFe濃度が高く、肉眼で茶褐色に見える部分と一致する。OG-02やOG-03では、緑色化した斜長石や変質しているように見えないカリ長石中においてもFeが認められる。ただし、この図では、斜長石やカリ長石中のFeの分布がわかりやすいよう画像処理してある為、OG-04や05においてFeが極端に増加しているとは言えない。Feが割れ目が広がっているため見かけ上高濃度領域が広く拡がっていると考えられる。

Ca分布を見ると、そのほとんどが斜長石中に含まれており、コアからのライン状カーポーが減少する帯構造を示していることがわかった。また、割れ部に近いほど斜長石、とくにそのコア部のCaが減少していることが認められる。

一方、黒雲母の変成により予想されるKの減少は、画像処理を工夫しても可視化できず、変質の進行に伴うKの増加はほとんどないことを示している。

4.4 微細構造と鉱物の微細組織における変質形態

割れ部に近づくにつれ、岩石中の微小構造の形成が認められるようになる（写真-1）。これらの微小構造は、石
英や斜長石の鉱物粒子を横断する状態で形成され、それが徐々に連続し、ひとつの割面へと発達する。割面帯に近づくにつれて、脆性破壊的な微細断面、鉱物粒子の閉口といった構造が形成される。このような花崗岩中の変質に伴う鉱物粒子内における微細なネットワーク状の空隙構造やその他の微細構造の発達は、岐阜県東濃地方の礫木花崗岩を対象とした蛍光レジンを用いた染色試験においても同様に確認されている。(写真1, A)。

写真1 水酸化鉄が充填した微細割面 (OG-04)
(A) 造粒鉱物粒子を横断する微細割面
(B) 斜長石粒子内部の微細割面中に充填した水酸化鉄

写真2 原岩の変質状態
(A) 割面帯内側の新鮮な黒雲母 (OG-04)
(B) バーミキュライト化し水酸化鉄の沈殿を生じた黒雲母 (OG-06)
5. 考察

5.1 熱水変質と低温の地下水による変質

本試料の変質プロセスは、次に述べる「岩体全体に及ぶ熱水変質」ならびに「割目帯と関連した比較的低温な地下水による変質」の2段階で説明できる。

まず前者の熱水変質については、熱水性鉱物である銅雲母、緑泥石、緑輝鉱石が深部で関係なく岩体全体で確認できることから推定される。割目帯内部でも黒雲母がほとんど変質を受けていないことから、熱水が割目帯を水みちとしていたことは考えにくい。この程度の弱い熱水変質は花崗岩において一般的であり、世界一言の露出花崗岩として有名なハートルフ花崗岩からも黒雲母の一部は緑泥石化していることが報告されているが、露出していないAAF根田花崗岩でも黒雲母の緑泥石化が認められ、鉱物パラメータ有りの多いという報告もある。つまり、花崗岩はそのマグマ固結後に熱水鉱物が埋め込まれることにより熱水変質が生じることが一般的と思われる。ただし、本試料においては熱水性鉱物が少なく、熱水変質が弱かったと考えられる。カリ長石が正長石であることも、正長石からのカリ長石への転移に触媒として働く水蒸気が少なかったことを示唆している。

一方、比較的低温な地下水による変質は、水酸化鉱の沈殿、斜長石のCaの溶脱とスケジューム化、そして黒雲母のパーキュライト化であり、本試料における変質の主要なものである。これらの変質は、割目帯に近いほど顕著となっていることから、割目帯を水みちとしていた地下水によるものと考えられる。本試料の採取深度付近には、とくに断層が存在するわけではなく、この割目帯は、花崗岩体が冷却固化した後の応力解放によって形成されたシーティングジオントが発達したものと考えるのが妥当である。割目帯近傍に見られる幾数割目はFUJI et al. (2006)が示す助解割目の中間と考えられる。それが破壊の進行とともに、造岩鉱物粒子内にネットワーク状の割目が広がり、次第に連続性の高い割目に発達するのであろう。それとともに空隙も広がり、そこに地下水が浸透することにより、鉱物の変質が進行すると考えられる。以下、割目帯に伴う比較的低温の地下水によると思われる水酸化鉱の沈殿、斜長石および黒雲母の変質について個々の考察を述べる。

5.2 水酸化鉱の沈殿

本試料では、割目から露出した水酸化鉱の沈殿が顕著である。とともに連続性の高い割目に水酸化鉱鉱の沈殿がよく確認される。このことは、水における顕微組織観察においても見て取れるだけでなく、SXAMによる元素マップにおいてFeが割目中に多く検出されていることからもわかる。

岩石が褐色化して見える割目帯内部の試料(OG-04，05)は、XRFによる全岩化学組成でFeが多くなり、SXAMによる元素マップで割目に沿ったFeの濃集が著
斜長石の変質プロセスに伴い、斜長石の変質状態が変化する。斜長石の変質状態は、結晶の成長、変形、変質の過程を反映するものである。変質状態は、結晶の成長速度、変形の程度、変質の進行度によって定義される。

変質状態は、結晶の成長の速度を示すもので、成長の速度が速いと結晶の密度が増加し、成長の速度が遅いと結晶の密度が減少する。変質状態は、結晶の成長の方向を示すもので、成長の方向が一定であれば結晶の形状が一定であるが、成長の方向が変化すると結晶の形状も変化する。変質状態は、結晶の成長の形態を示すもので、成長の形態が一定であれば結晶の形態が一定であるが、成長の形態が変化すると結晶の形態も変化する。
母の場合、いったん、その粒子を横切るかたちで後生的砂小粒が形成されると、(001)面に平行な顕著な断面にそって水が浸透することなく7)、変質が進まずやすいと考えられるが、
剖面帯内でさらに新鮮な状態であることが多い。このことは、
地下深部の黒雲母は低温の地下水では変質しづらいことを示唆している。

剖面帯(GG-04, 05)にある黒雲母はバークレアライト化
しており黒泥岩も少なからず傾向がある。黒泥岩の選択的に溶
解したとは考えられるような溶解実験の報告はないので、
黒泥岩のバークレアライト化も生じた可能性がある。足立
(1998)によれば、黒雲母のバークレアライト化は風化に
より容易に起こり、黒雲母中のFeの酸化がきっかけでバー
クレアライト化とFeの鉄水が起こるという。MURA-
KAMI et al. (2004) は、黒雲母の溶出実験を行い、酸素水
素酸では、黒雲母から溶出したFeはすでに水酸化鉄など
として沈殿するが、酸素欠乏状態では二酸化鉄が溶出しやす
くバークレアライト化またはスケルモライトの二次鉄化を生じ
していることを示した。本試料では、黒雲母中にバーク
レアライトが認められているが、バークレアライト化は黒雲母
または溶出速度が小さく、風化写真中では黒雲母がなくなりバー
クレアライト化が残っている例もあるので、表面をいく
たんバークレアライト化した黒雲母は溶出しづらく変質を
逃れたかかもしれない。剖面帯(GG-04, 05)中のMgが
0.15%程度と、それ以外の部分(0.2%程度)に比べて減少
していることや、Mgを含む主要な鉱物が変質したことがある
から、Mgの減少は黒雲母の溶出によるものと考えられる。
にもかかわらず、バルクのFe量があまり減少していない
のは、黒雲母から溶出したFeが酸化的な地下水によりす
ぐに沈殿したものか、より多くのが剖面帯の地下水か
る削鉱されたかどちらかであろう。

黒雲母の変質の度合いを粒子ごとの差が大きく、著しく
変質している黒雲母は数分離されただけの場所で新鮮な黒
雲母が認められることもある。剖面帯内部でもほとんど変
質していない黒雲母も見られる。これらのことは、地下水
の浸透が剖面帯に依存している例であると、長期間鉱物が間
で水で満たされていなかったことを示唆しているかもしれない。

5.5 変質タイプと地域環境の変換
これで考察してきた黒雲岩の変質型は、固結後に著
しく熱水変質を被っている土塚黒雲岩帯H)や神戸北部の
花崗岩P)は異なるように見える、しかし、観察される変
質岩類は類似しており、基本的には鉱物による変質と水
の浸透による変質の組み合わせと考えることができる。
本試料では、熱水変質は顕著でなく、地表付近に上昇し
て剖面帯が形成されるまでの長期間にわたり岩体内部へ熱
水の浸入を受けめた形態はない。熱水変質が弱いのは、本地
域の花崗岩がマングマ固結時の水が少なかったためと考えら
れる。熱水変質により鉱物が溶出されているならば、冷卻後も
地下水はその部分を「水道」そして選択的に浸透し、よ
り変質が進むことになると推測される。つまり、初期段階
で相対的に強い熱水変質を受けた花崗岩は、天水による変
質も受けやすくなる。逆に、初期段階で熱水変質をあまり
受けしていない花崗岩は、その後の変質に対しても強いと考え
られる。このような地下深部花崗岩の変質は、熱水により
変質に天水による変質が加わって進行していくため(図-5)
、結果的に変質度に大きな違いが生じるであろう。

わが国に分布する花崗岩は、その多くが中生代以降のも
のであり、付加体堆積岩中に異入・もじめし、隆起・浸食とい
うプロセスを経て、現在の状態(地域環境)を形成するのに至
っている。このことからも、少なくとも山岳帯の花崗岩は、
局的には同じく変化環境変換をたどってきたと思われる。

さらに、現在のわが国に確認される花崗岩体の地域環境
は、地表付近(〜数百mレベル)では、海底下のあるいは
沿岸地域であれば、天水起因の地下水循環によっ
て地下水反応を生じさせている可能性が高い。この地下水循
環に遭遇する岩体の状態は、先に述べたように、それま
でに形成された新鮮母岩〜変質母岩といわれる不均質性を有
するものであり、循環する地下水または遭遇する岩体の変
動種によって、あるいは成長によってその変化が規律される
こととなる。

現在、花崗岩帯型や堆積岩体を対象とした地域研究施設の
計画、調査・研究が始始されている。これを進めるため
に地域の変化が変化する岩体を観察することが、地域変化
環境の変換を研究していくうえで重要であると思われる。

6. ま と め
岡山市周辺の花崗岩について、地域における変質の特性
を観察の結果、次のようなことがわかった。
1) 変質プロセスとして次のよう2ステージが考えられる。
まず、マングマ固結直後に起こる浸透水帯があり、おもに、斜
長石は焼結変化、黑雲母は黒泥岩化が生じた。その後、花
崗岩が上昇すると、応力解放などによって生じた変質面
に比較的低地帯の地下水が浸透し、斜長石のスケルモライト化、
黒雲母のバークレアライト化、水酸化鉄の沈殿を起こした
と推測される。
2) 热水変質の沈殿は、剖面帯内部だけでなく、変質した斜
長石やカリ長石内の粒状変化などに沿って広がっている。
3) 斜長石は、低温の地下水によっても若干も変質しやすく、
変質帯の発達とともにたんCoが溶出、Feが増加している。新鮮
母岩中においても焼結変化が認められる一方、剖面帯に近
づくほどスケルモライト化している。
4) 黒雲母は、剖面帯内部でもほとんど変質しておらず、地
下において低温の地下水は変質しにくいと考えられる。
応用地質 第49巻 第5号

1. 固結直後（未変質）

2. 熱水による変質

3. 天水による変質

図-5 花崗岩の鏡下における変質プロセス模式図
Qz：石英，Kf：カリ長石，Pl：斜長石，Bk：黑雲母，
Chl：緑泥石，Ep：輝石，Srr：緑泥石，
Sm：マグネタイト，Vpx：ベーリット，
Poe：高酸化鉄

5) 地下花崗岩の変質プロセスは、基本的にマグマ固結後の
熱水変質と割目に浸入してきた天水（地下水）による変質で
説明可能である。

謝辞 本研究をまとめるにあたって、足立守・名古屋大学
博物館教授、竹内誠・名古屋大学大学院環境研究科准教授
に新造地質学的観点から議論していただいた。名古
屋大学大学院総合研究センターの周囲諸氏には花崗岩
の指導をいただいた。ここに記して、ここに謝意を
表する。

引用文献
1) MILLER, W., ALEXANDER, R., CHAPMAN, N.,
disposal of radioactive wastes and natural analogues,
2) 吉田英夫・鶴岡出英・山本憲治(2006)：地下深部花崗岩の
二次的変質にみる長期的地下水環境の変遷解析、地質環境シンポ
ジウム論文集, pp.135-138.
3) YOSHIDA, H., AOKI, K., SEMBA, T., OTA, K., AMANO,
HAMA, K., KAWAMURA, M. and TSUBOTA, K.(2000) : 
Overview of the Stability and Barrier Functions of the
Granitic Geosphere at the Ramaha Mine : Relevance to
Radioactive Waste Disposal in Japan, Jour. Engineering
Geology, Vol.56, pp.151-162.
4) AKAGAWA, F., YOSHIDA, H., YOGO, Y. and YAMA-
MOTO, K.(2006) : Redox front formation in fractured
crystalline rock : an analogue of matrix diffusion in
oxidizing front along water conducting fracture, Jour.
Geochemistry, Exploration: Environment and Analysis,
Vol.6, pp.5-12.
5) 赤川史典・吉田英夫・鶴岡出英・山本憲治(2006)：花崗岩剖
面周辺の酸化還元反応と二次的物質移動現象—地質環境中汚
染物質の移動と長期固定に関するアナログ研究—、地質学雑
6) KAGAMI, H., HAKAMA, H., SHIRAISHI, T. and NUREKI,
T.(1988) :Rub-Sr whole rock isochron ages of granites
from northern Shikoku and Okayama, Southwest Japan,
7) 原木秀一・藤谷孝雄・山本憲治(2004)：岡山市、倉敷市、京
山市、徳山地域の花崗岩体と周辺地質、日本地質学会学術大会
講演要旨, Vol.111, pp.177.
8) 深澤輝一・浅見正雄・光野善雄(1979)：岡山県南部の花
崗岩類、地質学論集, Vol.17, pp.36-46.
9) ISHIHARA, S. (1977) : The Magnetite-series and Ilmenite-
series Granitic Rocks, Mining Geology, Vol.27, pp.283-305.
contrasting granite types, Pacific Geology, Vol.8, pp.173-
174.
11) ISHIHARA, S. (2008) : Chemical contrast of the Late
Cretaceous granitoids of the Sanyo and Ryoke Belts,
Southwest Japan : Okayama-Kagawa Transect, Bulletin
12) ISHIHARA, S., YOSHIIKURA, S., HORIKA, S.,
OGASAWARA, M., NISHIO, J. and TERASHIMA, S. (2008) : 
On the oxidized and reduced granites found in quarries of
Okayama city, Southwest Japan, Bulletin of the Geological
13) 藤田勝代・藤川進二・横山祐治(2006)：深度750m調査テー
リング孔の花崗岩の剖目分布様式(1)，シーティングジョ
イントに関する観察の深層化、日本応用地質学会平成18年度
研究発表会講演論文集, pp.417-420.
14) 藤本勝代・藤川進二・横山祐治(2006)：深度800m試掘によ
る岡山県万花花崗岩の剖面の分布様式、日本応用地質学会
平成15年度研究発表会講演論文集, pp.381-384.
15) 西本昌司(1996)：画像処理ソフト "Adobe Photoshop"を
用いた花崗岩岩石のモード測定、岩誌, Vol.91, pp.235-
241.
16) HOSOKAWA, Y., OZAWA, S., NAKAZAWA, H.,
NAKAMAYAMA, Y.(1997) : An X-ray guide tube and a
desk-top scanning X-ray analytical microscope, X-ray
17) 鶴岡出英・吉田英夫(2006)：深部花崗岩剖面に伴う変質物
料からみた地下水環境の推定、応用地質学会2006年度年会講演要
旨論文集, pp.393-396.
18) 西本昌司・鶴岡出英・天野健治・吉田英夫(2008)：地下深部
Alteration of Subsurface Granitic Rock in Okayama Area, Japan

Hidekazu YOSHIDA, Shoji NISHIMOTO, Akio CHO, Koshi YAMAMOTO and Nagayoshi KATSUTA

Abstract

In order to understand the alteration process in subsurface granitic rocks, drilled core (100 meters deep) taken from Mesozoic granitic rock distributed in the Chugoku area of Japan has been investigated. The rock is characterized by the coarse size of rock-forming minerals such as quartz, plagioclase, orthoclase and biotite. The borehole logging and core observations show that there are several fractured zones, and almost all these structural features are associated with alteration zones that have been formed by water-rock interaction. The studied samples were collected from the altered zone at the location of 40 to 50 meters below the ground surface. Detailed analysis of the pore geometry, mineralogical observation and geochemical analysis were carried out to reveal the changes of textural and geochemical characteristics due to water-rock interaction. Alteration feature of rock-forming minerals such as plagioclase and biotite shows that the granitic body has two stages of thermal and water-rock interactions. One is the high-temperature hydrothermal alteration after the magma solidification, and the other is relatively low-temperature alteration probably due to groundwater circulation after the being exposed at the surface. This kind of methodology used for rock forming minerals of subsurface granitic rock can be applied to understand the alteration history due to the water-rock interactions during the formation of granitic body.

Key words: granitic rock, alteration, water-rock interaction, geological environment