Geological Disposal of High-level Radioactive Waste and Geological Environment in Japan
by Kazuhiro SHIMIZU, Toshihiro SEI and Hidekazu YOSHIDA

The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements.

Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/deformation and climatic/seismic-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligibly probable cause of significant effects. Uplift/deformation and climatic/seismic-level changes are gradual phenomena and are very ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena.

Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan.

Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection procedure.

KEY WORDS: Geoscientific Disposal, Geological Environment, High-level Radioactive Waste

串

高レベル放射性廃棄物の地層処分と
我が国の地質環境 *

清水和彦1 泉尾俊弘2 吉田英一3

なお、本稿で使用されている専門用語の定義については、JIEAのホームページ（http://www.jeea.org）をご覧ください。

*2001年4月26日受付 6月26日採用

1. 核燃料サイクル開発機構 東海理由学センター 地質環境研究部門 核燃料サイクル開発機構
2. 核燃料サイクル開発機構 東海理由学センター 地質環境研究部門 核燃料サイクル開発機構
3. 核燃料サイクル開発機構 東海理由学センター 地質環境研究部門 核燃料サイクル開発機構

キーワード: 地層処分, 地質環境, 高レベル放射性廃棄物

核燃料を化学的に処理してプルトニウムやウラニウムを回収（再処理）し、再び燃料として使用すること（核燃料のリサイクル）が原子力利用の基本方針となっている。また、再処理した後に残った廃液（高レベル放射性廃液）については、これを安定な状態にガラス固化し、30〜50年の間冷却のために貯蔵した後に、地下300m以深に地層処分する方針である。

地層処分の概念は、地下深部の岩盤中に廃棄物を埋設することにより、長期間にわたって人間の生活環境から隔離し、将来の世代にも廃棄物による影響が及ぼすようにすることである。地層処分された廃棄物が人間やその生活環境（以下、人間環境）に影響を及ぼす可能性としては、大別して、2つの道筋（シナリオ）が想定される。

一つは、廃棄物と人間環境との物理的な距離が接近することによる、廃棄物の影響が人間に及ぶことを想定したもので、これに至る道筋を「接近シナリオ」と呼んでいる。このシナリオにおいては、火山の噴火による廃棄物の放出や地盤の急激な隆起・
侵食に伴う処分場の露出などが想定される。

もうひとつの、廃棄物から浸出した放射性核種が地下水を介して
人間環境に拡散することを見越したものので、これに至る道筋を
「地下水シナリオ」と呼んでいる。このシナリオにおいては、核種
の溶出などを支配する化学的反応と地下水の動き、およびそれ
がら伴う核種の移行が重要なプロセスとなる。

このようなシナリオとして想定される廃棄物による影響が、長
期にわたって人間環境に及ばないようにするため、層状処分にお
いては、火山活動や地殻変動などの影響が小さい安定した地域や岩
盤を選定したうえで、そこに適切な多重ディバータシステム（人工が
作り上げる「人工パリア」の安全防護機能と環境環境が本来的に
備える「天然パリア」としての間隔性・遮蔽性を最適に組み合わ
せてる多重の防護システム）を構築するという対策がとられる。
具体的には、ガラス固化した廃棄物（ガラス固化体）を金属製の容
器（オーバーパック）に密封したうえで、岩盤の空洞内に注ぎ（緩
衝材）で包み込んで埋設することが考えられている。

また、層状処分の長期的な安全性については、上記のシナリオを
さらに具体化していくためのケースを設定したうえで、各ケース
において想定される影響をモデルとデータを用いたシミュレーシ
ション解析によって評価する。すなわち、多重ディバータシステムを
構築する地質環境（岩盤と地下水）、人工材（ガラス、オーバーパッ
ク、緩衝材）および放射性核種（核分裂生成物や短クラン元素）の
性質や挙動を、フィールド調査や室内実験などに基づく適切な
データとモデルで表現し、これを用いて長期間にわたる放射性
核種の移行や人間環境への影響を数値解析によって評価する。

以下のような、このような層状処分における安全確保の仕組みと我市国
の地質環境の特性を対比させながら、処分場に適した地質環境
が我が国に存在する可能性を確認する。なお、本稿で紹介する情
報は、層状処分研究開発第2次取りまとめ（サイクル機構、1999）
による。

1. 層状処分と我が国の地質環境

1.1 層状処分にとって重要な地質環境条件

層状処分による安全確保の仕組みにおいて、地質環境には、ま
せ処分場として確保した場所が長期にわたり十分に安定である
こと（地質環境の長期安定性、）次いで人工パリアの設置環境およ
び天然パリアとして、岩盤とそこに含まれる地下水の物理的・化
学的性質（地質環境の特性）が適切であることが要求される。
これで、地層処分の場として具体的に着目しているのは、
・日本列島およびその周辺地域における、
・深度350mから1,000m程度までの、
・数km四方の水平的広さを有する、
岩盤である。

地質環境の長期安定性に関しては、地下環境の地質環境に影響
及びずす可能性のある自然現象に着目し、それらの特徴や影響の
程度を把握することが重要である（図1a）、処分地の選定に関し
ては、地質環境に急激な変化や累積的な変化をもたらす自然現象
によって、多重パリアシステムの性能が著しく損なわれることの
ないような場所を選ぶことが前提となる。

上記のうち、人工パリアの設置環境として重要な岩盤の熱や力学に関する特性および
地下水の動きや水質に着目する必要がある（図1b）。なお、天然パ
リアの機能としては、これに加えて、岩盤中での地下水を対象とす
る物質の移動・遅延化が重要となる。層状処分の実施に際して
は、このような地質環境の特性を十分に把握したうえで、それに
応じた人工パリアや防護構設を設計・施工することにより、多重
パリアシステムとしての最適化が図られる。

1.2 日本列島の地質学的特徴

層状処分の観点から我が国の地質環境を理解するうえで、まず
日本列島の特徴を把握しておくことが重要である。

日本列島は、大陆から続くプレート（ユーラシアプレートと北
米プレート）の縦縁部にある低圧な列島であり、太平洋側から2つ
の海洋プレート（太平洋プレートとフィリピン海プレート）が、日
本列島の下に沈み込んでいる（図2）。このような列島周辺に
おけるプレートの配置やその運動様式に支配され、列島上には
火山帯が帯状に分布し、また、活発な断層活動や隆起・沈降運
動が認められる。これが、ときに安定大陸にある欧米諸国と比較
した、日本列島の特徴である。

このような自然現象の活動を背景とした日本列島の特徴は、こ
れを構成する地形や地質にも現れており、山地が多く起伏に富
む地形、数多くの火山とその噴出物の広い分布、様々な種類の地
層や岩体が構成する複雑な地質は、我が国の地質環境を理解するうえで考慮すべき重要な特徴といえる。
そのほか、比較的温暖な気候や豊富な降水量、周囲を海に囲まれた島国であるといった地理的・気候的条件、もとに地下水の動きやその化学的性質をとらえるうえで重要である。我が国では一般に地下の水位が高く、岩盤は地表付近まで地下水に浸潤されていた。また、沿岸地域では、内陸から選ばれてきた降水を起源とする地下水が海に流出し、そこに淡水と塩水の境界領域ができる（図3）。

1.3 地質環境条件の調査研究
次に、さらに、 isEqualToString。では、我が国の岩盤および地下水の性質や主要な天然現象の発生状況などを詳しく理解する観点から、地球科学の各分野に蓄積されている情報を収集し解析を進めてきた。すでに、既存のデータの多くは地質環境の観点から得られたものではないため、地質深部における地下水の動きや水質、あるいは岩盤中の物質の移動に関する精度の高い情報は限られている。このため、深部地質環境に対する理解を深めていくことを目標に、地層構造研究開発の基盤となる基盤的科学研究（地質科学研究）として、岐阜県の池田山地および岩手県の金箔山地において、地下水化学やポーリングなどの利用した研究を進めてきた。
また、地質科学研究のもう一つの柱として、地質環境の長期安定性について重要である自然現象の活動の特徴や地質環境への影響などを把握することを目的に、現地調査や年代測定を主とした事例研究を進めている。

地質科学研究所は基盤をもつが、我が国の地質環境を幅広くとらえて進めるべき、ジェットコースト研究開発においては以下の2点が地質環境研究の大きな課題となる。
(1) 地質環境に影響を及ぼす可能性のある自然現象について、現地の地形や地質に残された記録などを整理・分析することにより、過去の活動にみられる傾向や地域性に基づいて将来の活動を推測し、地層処分によって十分に安定を取れる地層環境が我が国に存在する可能性を示す。
(2) 我が国の地質環境を幅広くとらえたうえで、地球科学や土木工学などの分野に蓄積されている情報を整理・分析し、地質地域や隣接地域で得られる実際データとあわせて比較・検討することにより、地層処分にとって重要な岩盤および地下水の一般的な性質を示す。

2. 我が国における地質環境の長期安定性
2.1 地質環境の長期安定性と自然現象
処分システムが所定の安定性能を発揮するためには、地層処分場となる地質環境が、期待される地層処分数年間をもって維持することを必要とする。そのためには、地質環境に変化をもたらす様々な天然現象によって、処分システムの性能が著しく損なわれることのないよう、十分に安定な場所を探し、また想定される変化を見込んで適切な工学的対策を施すことが重要である。前述したような我が国の地質学的特徴を踏襲して、また巻国の地質学において重要な変化として、地震活動、火山活動、断層・地すべりおよび気候・海水準変動が抽出された。

2.2 将来予測の考え方
将来における地質環境の活動を評価するための基本的手法は、過去を踏まえた外帰である。各天然現象の過去における活動パターンや変動サイクル、あるいはそれらの時間的・空間的な変化を理解することにより、過去から現在に続く変化の進行の状態として将来の変化が推定される。現在の地質や地形に達した過去の地質現象の活動履歴を追跡していけば、過去から現在までの変化の中にある一定の傾向や規則性を見い出すことができる。これに基づき将来における天然現象の活動の可能性や変動の規模などを推定することができる。

地層処分の安全性を評価すべき時間枠については、現在のところ基盤的な数値は設定されていない（原子力安全委員会、2000）。ただし、地質環境の長期安定性の評価については、過去数千年程度の地質学的な記録を基に、将来数十年程度の変化を検討することが期待されている（原子力安全委員会、1997）。地球の歴史の中で最も新しい地質時代である第四紀（約10万年前～現在）と、最も近い数千年程度については、過去における天然現象の活動の履歴が現在の地質や地形に比較的良好に保存されており、年代ごとの情報も豊富である。したがって、過去数千年程度については、時間の流れや活動の活動履歴を、高精度で分解解で理解することができる。また、プレートの配置やその対称性が変化する日本列島のテクトニックの場において、地質の応力状態などその変動は、数万～数百万年に地質学的な時間の中で、一定の傾向を持ちつつ進行していく（数千年間程度に、その傾向が急激に変化するようなものではない）。過去数千年程度の記録をもとに、将来数千年程度における天然現象の活動を検討することは、地球科学的に妥当なアプローチといえる。
各種現象について得られた主な知見を以下にまとめる。

(1) 断層活動
断層活動による処分システムへの影響としては、岩盤の破壊・破砕を伴う地下水移行路の形成などが想定される。これらは、岩盤が断層線にわたって破壊・破砕されるような所を、すなわち主な活動断層の近傍は、処分地の選定に際して避けるべきである。

我が国における主な断層活動は、過去数十年間で発生、既存の断層断層帯（近在断層帯は断層帯を構成する断層帯に近接する一つのゾーン）において同様の活動様式で繰り返し起こっており、この間、地震応力場はおおむね安定して続いていることがわかる。このことから、十年程度の将来については、現在までと同様の活動が継続するものとして、断層活動を評価することが妥当である。我が国における主な活動断層帯はおおむね把握されているが、周辺は多数の断層帯が存在する地域や海底などについては、ポーリングや理学探査などを用いた地表構造調査によって、断層構造の有無や安定を確認する必要がある。なお、断層活動と地震活動については、そもそも地殻変形の影響は小さい（Shimizu et al., 1996）、十分な設計対応が可能である。

(2) 火山活動
火山活動による処分システムの影響としては、マグマの貫入・噴出による堆積物の破壊や地中への出露、マグマからの放熱や地下水への熱水・火山ガスの混入などを想定される。これらの現象、特にマグマの貫入・噴出などが起こりそうな地域は、処分地の選定に際して避けるべきである。

我が国における火山活動は、ブレートの配置やその沈込み角度などに支えられている堆積物の重力変形を有する。ときに、第四紀においでは、火山活動の場で大きな変化をもたらした新たな火山の形成や活動の休止・再開、あるいは噴出位置の移動を伴うながらも、限定された地域内において活動が繰り返されている（図5）。
したがって、十年程度の将来については、このような過去数百万年にわたって繰り返されている活動の延長として、火山活動の場を評価することが妥当である。なお、第四紀よりも古い時代の火山噴出物の分布によれば、過去数百万年にわたって、日本列島における火山活動の場は大きく変わっている。このことは、数百万年の時間を考慮に入れるとき、日本列島のテクトニクスは大きく変わらなかった（ブレート沈込みの方向や速度などが多少変化しても、火山活動の場を大きく変える）と

図4 堆積層の地下構造（断層断層帯の例），反射法地震探査の結果に基づいて推定された堆積層断面図（佐藤ほか，1996年「一部改変」）

図5 第四紀火山の堆積断面（北海道の例），過去200万年間にわたって、我が国における火山活動は，新たに火山の形成を有する活動の休止・再開を伴いながら、同じ地域内で繰り返し起こっている。 （サイクル機構，1999年 ）

なかったことを意味している。その一方で、現在も海底の拡大や新たなブレートの沈込みなどが進んでいる地域もある。そのような地域では、将来における火山活動やそのほかの自然現象について、慎重な検討が重要となる。

火山の周辺では、海底に存在するマグマや高温岩体からの熱による地表の上昇、あるいは堆積成分の混入による地下水の水質変化などが起こっている。全国規模の地質調査図（矢野ほか，1999年）やいくつかの火山地域での事例研究（泉田ほか，1999年）によれば、そのような影響が及ぶ範囲は、火山の噴出中心から数～20 km程度である。これらの地域においては、このような火山活動による影響の程度と範囲を人工バイアスの熱伝導性や堆積物の設計との関係で評価し、処分場の位置やベントアートを検討する必要がある。なお、断層活動や地震活動については、そもそも地殻変形の影響は小さい（Shimizu et al., 1996）、十分な設計対応が可能である。

(3) 隧道・浸出
隧道・浸出による処分システムへの影響としては、処分場の露出が、まず配される。処分地の選定に際しては、隧道・浸出の規模や速度を地域ごとに評価するうえで、変動の激しい地域については、断層帯や火山と同様に、避けるべきである。露出に至らないでも、時間の経過とともに処分場の深さや地表部の状況は変化する。このような影響に対処するためには、予想される隧道・浸出の程度を考慮して、十分な深度に堆積物を埋設することが重要である。

隧道（沈降）運動は、時間の経過とともに累積していく現象であり、日本列島における深部と平均の形成は、広域的な断層や沈降運動が長期にわたって継続した結果とみなすことができる。日本列島における隧道（沈降）運動の主な原因は、ブレートの後退に伴う地殻応力場に対する地表変動を伴にして、地域ごとに一定の傾向に沿って累積している（原岡ほか，1995年；田中ほか，1996年）。このような変動の傾向は、地域差が違うものの、少なくとも過去数百万年を通じて継続しており、今後も同様に継続していくと考えられる（図6）。
したがって、十年程度の将来については、地域ごとの特徴を踏まえて過去の変動を外挙することにより、想定すべき変動域を設定することができる。過去の変動量は地震面の速度変化などから推定されており、一部の不安地帯や半島断端部を除く多くの地域で、
以上のようにして、気候・海水準変動については、将来に想定される変化の幅が見込まれるので、その影響を解析的に評価することが可能である。その際、地球温暖化などの二次的、短期的な変動を、気候学的および気候変動学的に考慮して評価することも可能である。

3. 我が国における地質環境の特性

3.1 多重パラディアシステムと地質環境の特性

多重パラディアシステムを基本とする地層分野の安全確保において、地質環境には、人工パラディアにとって適切な位置を提供することも求められる。このうち、人工パラディアの性能としては、地質環境中での物質の溶解や濃縮を支配する地下水の動きおよびその地球化学的特性が重要である。人工パラディアの設計・施工においては、岩盤の熱および力学に関する特性が重要であり、地層中の安定性や環境集中度を維持するため、地層および地層の低す果たさが少ないことが推奨される条件である。これらは、岩盤自体の強度や熱伝導性などの物性とあわせて評価する必要がある。一方、地層パラディアの機能については岩盤中における地下水を利用とする物質の移動、隕降に関与する空間の構造や化学的・物理的特性が重要である。

以上のようにして、多重パラディアシステムとして重要となる地質環境の特性は、①地層中の水の移動特性、②地層中の水の化学特性、③岩盤の熱特性・力学特性。④岩盤中での物質移動特性として、とらえることができる。

3.2 深部地質環境の一般的な特性

多重パラディアシステムとして重要となる地質環境の特性については、これまでの調査研究により、我が国における一般的な傾向を概観的に把握するとともに、それらに基づき、人工パラディアの設置環境や熱伝導パラディアとしての機能を検討し得るとの見通しを得た。すなわち、我が国の深部地下水中は一般的に動きが遅く安定的な状態にあると考えることができる。地層中には、地層の多層構造に富む状況が広い区域を形成する深層岩盤が我が国に広く存在し得ることなどが確認できた。

地下深層の地質環境の特性について、これまでで得られた主な知見を以下にまとめること。

(1) 地下水の流動特性
岩盤中には含まれる地下水の動きは、主に動水勾配と岩盤自体の透水性に支配されている。このうち、動水勾配は地形的に依存するが、地形環境は地形的にも地形的にも依存する。このため、地形条件によって地下水勾配は変わり、また、地形条件の岩盤は、一般に地形条件に比べて新鮮化が進んで求められる。

全国各地の井戸データ（日比谷ほか、1999など）から地球深層の動水勾配（地下水面の勾配）を求めた結果によれば、地表付近での動水勾配は地形勾配に強く支配されており、低地（0.008）、台地（0.014）、丘陵地（0.03）などで地形ごとの平均値を設定する。一方、東業地域における深層ポーリングでの実測結果や、地表付近の動水勾配は、地表付近の地下水勾配に比べて明らかに小さい（図1）。

岩盤の透水性については、土木工学的な分野に蓄積されている実験データと東業地域および金杉銭山で得られた地下水深層に求めての実験データとの比較・検証を行った。その結果によれば、岩盤の透水性は岩盤の種類や岩盤によって異なるが、断層帯帯帯やすべり帯帯帯を除くと、地表深層の岩盤としても地下水の平均的な透水係数はおおむね10^-10〜10^-7 m/s²の範囲にある。

(2) 地下水の地球化学特性
地下水の水質は、起源となった
水の性質とその水と岩石との化学反応（溶出・沈殿・イオニン交換など）によって形成される。我々が現在では、海岸付近では海水起源の地下水、火山地域ではマグマの影響を受けた地下水的存在を考えられる。

降水を起因とする地下水については、東亜地域や金沢銅山で得られた実測データに基づき、その地球化学特性を把握するときの、水岩反応試験や化学平衡論による理論計算とあわせて、水質形成機構を検討した（図8）。降水を起因とする地下水の水質形成に寄与する主な反応は、長石類や方解石の溶出、粘土鉱物と地下水とのイオニン交換などである。これらの反応により地下水の水質は、地表近くでNa⁺、Ca²⁺およびHCO₃⁻に富み、地下深部に従ってCa²⁺が減少しNa⁺、HCO₃⁻が増加する。同時に、pHは酸性から弱アルカリ性に変化する。また、堆積岩では深さ数十m、花崗岩では深さ数百万m程度で、遅延水の地下水が形成されている。地下水の遅延炭酸化反応を示すことで、堆積物や鉱物の化学反応を考慮した計算方法（Iwatsuki & Yoshida, 1999）などを用いる。

一方、海岸を起因とする地下水については、海水が侵入しているものの、沿岸地域での研究事例（Li et al., 1997；亀井, 1997）から、地表深部での水質はNa⁺、Cl⁻に富み、降水を起因とする地下水と同様の反応により遅延炭酸化が考えられる。

（4）岩盤の特性と力学特性
岩盤の性能および力学的性質は、その物理的性質と鉱物組成の特性により影響される。

地下水については、深層ポーリングデータに基づく水質分布の全体分布図が作成されている（尾崎ほか, 1999）。これによれば、火山の周辺を除く大規模な地域で、水質分布はおおむね5℃/100m以下、平均的には3℃/100m前後である。

初期内陸に関しても、文献データと東亜地域および金沢銅山での実測データとの比較・検討を行った結果、その結果によれば、地下深部での鉱物変化は、しばしば大変圧縮し、鉱物変化と水平面内の平均変化との比は地下深部ではほとんどもの、の深さが増すにしたがって1前後に近く（Matsumi et al., 1997）。

一方、岩石の主要性質についても、土木学的な観点での蓄積されている文献データを、東亜地域および金沢銅山で得られた実測データをあわせて、岩盤ごとに整理した。処分場を設置する際には、対象となる岩石の性質やその地の応力状態などに応じて、レイアウトを施設計画の最適化が図られる。いずれにしても、我々がより多くの地域において、地下水深度1000mの深度に処分場を建設することは、工学的に十分可能ですと考えられる。

なお、東亜地域（新第三紀堆積岩）および金沢銅山（白亜紀花崗巖）において、処分場前後の岩盤の化学特性の変化を観察した結果、破壊反応によって周辺の岩盤の強度や透水性などが変化する範囲は、東亜地域から1m程度までであった（八村ほか, 1998など）。処分システムの設計・施工や性能評価においては、このような影響を受ける領域に対して十分な注意が必要となる。

（5）岩盤中の物質移動特性
地下水を媒体とする物質の移動については、地下水の動きだけでなく、濃度分布による物質移動（岩石のマトリックスを通じた物質の移動）や、鉱物の表面に吸着するように現象としても注目する必要がある。すなわち、岩盤中での物質移動特性を理解するためには、主に移行速度を示す岩盤構造要素を有するもの、その物理的な構造と化学的性質をとらえることが重要となる。

物理的な構造に関しては、従来より、多くの鉱山やトンネルでの観察から、花崗岩などの密密な岩石では、岩盤中に発達した割れ目のネットワーク構造が支配的な移行経路となり、一方、大規模な破壊が発達した新しい堆積岩では、粒子間の空隙が主な移行経路となると考えられてきた。東亜地域および金沢銅山での詳細な観察や試験結果は、これらに加えて、鉱物の表面に吸着したり、鉱物の中の微細割れ目などが、移行経路として重要な役割を果たしたことが報告されている（Yoshida, 1994A）。また、花崗岩中に存在する透水性の割れ目表面から数mm程度まで、マトリックス拡散が生じていることが実際的観察された（Ota et al., 1997）。

一方、化学的な性質として、移行経路に存在する粘土鉱物および雲母鉱物などの吸着能力が高いことがわかっている。東亜地域の鉱床とも、天然に存在する、鉱物の表面に吸着した粘土鉱物や雲母鉱物が、マトリックス中に拡散している（Yoshida et al., 1994A）。

4. サイト選定と環境調査技術
4・1 サイト選定の要件

処分場のためのサイトの選定は、2000年を目日に設置される処分場の実施主体が行うこととされている。また、その選定プロセスについては、1）処分場地帯の選定、2）処分場地帯の選定および3）処分場地帯の選定の3つの段階が想定されており、処分場地帯の選定段階には予備的研究が、また、処分場の選定段階には地下施設を利用したサイト選定調査が行われることとされている（原村力会議, 1994）。一方、処分場地帯の選定段階においては、文書による調査が主体となると考えられる。
なお，2000年5月に成立した「特定放射性廃棄物の最終処分に関する法律」では，①概要調査地区の選定，②詳細調査地区の選定および③最終処分施設選定地の選定の3段階が設定されており，概要調査地区の選定段階には文献等による調査が，詳細調査地区の選定段階にはポーリングなどによる地上からの調査が，さらに，最終処分施設選定地を選定する段階には地下施設を利用した調査が行われることとされている。また，2000年10月には，この法律に基づき，実施主体である原子力発電施設振興機構が設置された。ただし，本稿で示す内容は，それ以前の検討に基づくものであるため，誤解を避ける意味で，ここでは「処分廃棄物の選定」および「処分地の選定」という用語を使用する。

私が国の地質環境の特徴や隣国との事例などに基づき，サイトを選定する際に考慮すべき地質環境上の要件として，以下の事項を整理した。

（1）断層活動および火山活動によって処分システムの性能が損なわれないこと　この要件を満たす場所は，活断層や火山が分布する地域から十分に離することにより確保できる。我が国では，主要な活断層や第四紀の火山の分布が把握されており，処分施設地を選定する段階には，これらの影響範囲を見込んで距離を設けることが可能である。また，予定段階の選定段階には，ポーリングや物理探査あるいは年代測定などの手法を用いて，活動の履歴や岩盤および地下水の性状を調べることにより，影響の有無や程度を実際に確認できる。

具体的にどのような程度の距離を離すかは，個々の活断層や火山にあって，あるいは処分施設のレイアウトとの関係で決ってくる。前述のような若者によれば，例えば若くとも活断層周辺の幅10kmの範囲や火山の中心から半径30kmの範囲を密に検討では，断層活動および火山活動による影響は十分に小さいとえる（図9）。実際には，個々の活断層や火山の影響範囲は，概して，これらの数字よりも小さいと考えられる。

（2）隆起・侵食によって廃棄体が地表付近に接近しないこと　この要件は，廃棄物を埋設する深度との関係において，廃棄体を隣接すべき要件に見られる隆起・侵食が十分に小さい地域を選ぶことによって満足される。我が国では，隆起・侵食の地域的な傾向が把握されているため，処分施設地を選定する段階においても，隆起・侵食が著しい地域をあらかじめ避けることができる。

また，予定段階の選定段階には，地質環境地域の性質に基づいて，より詳細な分析が可能となる。その際には，気温・降水現象の変動が注目される。

（3）岩盤の規模が十分で，地下資源が存在しないこと　対象とすべき岩盤が，必要な規模の処分施設を埋設するうえで十分な空間的な広がりを有すること，将来における人間活動の影響となるような地下資源が存在しない場所であること，重要な地質環境上の要件となる。これらの要件については，地質図や地図分布図などの既存の情報に基づいて検討することが可能であり，地質図の段階には実際に確認できる。

（4）岩盤と地下水の性質が適切であること　サイトの岩盤や地下水の特性は，地下水施設を利用したサイト特性調査と，そこから得られるデータを用いた処分システムの設計や安全評価によって最終的に確認される。ただし，このようなサイトでの具体的なデータの取得に先立って，その地域の地質，地形的な特徴に基づき，岩盤や地下水の性質がある程度予測しておくことは可能である。また，サイト特定調査に於る予備的な調査として，ポーリングなど実施すれば，サイトの岩盤や地下水の適性について相当の見通しを得ることができる。地下水の流量や水質変動状態，地温，応力状態などは，人工バイオの設計環境として重要な地質環境条件であるため，サイト選定のできるだけ早い段階で確認しておくことが望まれる。

さらに設計上のクリティカルな要件となり得る風土について，は，深度を深くすることによって条件が厳しくなるため，許容できる地質条件を設定したうえで条件を満たすことが必要である。例えば，地温勾配が3℃/1000m程度であれば，地温1000m程度では問題なく設計できることが確認済みである（サイクル機構，1999）。また，このような地域は，我が国に広く存在している（図11）。なお，3℃/1000mを超えるような地熱変形に対して，設計上の対応をはかることも十分に可能であろう。
物理探査、ポーリングによる調査、地下施設を利用した調査）へと進展していくのが合理的である。ただし、実際に現場での調査を進めめる際には、文献調査で得られた情報を基に、具体的な調査計画が策定され、また、調査計画の各段階ごとに、事前解析などを通じて手法の最適化が図られる。その際には、たとえば、一部のポーリングを地質調査で物理探査に先立てるなど、既存情報の変更やサイトの変動、あるいは社会的な制約などに応じた柔軟な対応が必要となる。

以下、地質環境の調査を、文献調査、地質調査、地上からの調査および地下施設を利用した調査に分けて、各調査の内容について検討する（図12）。文献調査は主に処分施設の選定段階において、地上からの調査は処分施設の選定段階から処分施設の選定段階（サイト特性調査）にわたって、また、地下施設を利用した調査は、サイト特性調査の一環として実施される。

(1) 文献調査 文献調査では、地層分類の場として不適切な地域をあらかじめ除外しておく観点から、以下のような項目について検討がなされる。

- 地震活動：活動層の分布・活動履歴・影響の程度と範囲、地熱活動など
- 火山活動：活動層の分布・活動履歴・影響の程度と範囲、地熱の分布など
- 断層・侵食：変形形態・速度、気温、降雨量、海水の影響など
- 岩盤の広がり：地層の規模・深度、大規模な構造線の分布など
- 地下資源：鉱物資源・エネルギー資源の分布など

が図において、全国規模で詳細な地質図や分布図が整備されているが、サイトによっては、既存の情報だけでは十分な検討を行うことが困難な場合も予想される。文献調査の段階では、その時点で得られる情報の限りにおいて、明らかに適性の劣ると判断されるサイトを除外することが重要である。

(2) 地上からの調査 地上施設を建設する前のサイトでの調査として、空中および地表または地上からの物理探査、地表踏査、ポーリング調査およびトレセン調査などが実施される。これらの調査によって得られるサイトの実際のデータに基づき、文献調査によって検討した項目について再度、吟味がなされる。さらに、地層処理システムの機能を模く可能な可能性のある自然現象について、最近の地質時代に活動または影響の痕跡がないこと、および将来、活動するのような変化のないことなどを確認しておくことが重要となる。

また、この段階では、地下深部の岩盤や地下水についての実測データが取得され、多重パラメータシミュレーションの結果から、サイトの適性が具体的に検討され始めることになる。すなわち、ポーリング調査などによって得られる実測データに基づき、サイトの地質構造、地下水の流動特性と地球化学特性、岩盤の熱特性・力学特性および物質移動特性が、人工バリアの設置環境および天
然バリヤーとして適切な状態にあるかどうかが検討される。
空中の調査には、人工衛星を利用したリモートセンシング
や航空観測を用いた観測が行われる。これは、大規模な断層
帯や地質の分布を把握するためにきた手法として有
効である。
地表からの調査では、まず地表磁気や地上物理調査が行われる。
これらにより、空中の調査では把握できにくい比較的小規模な
断層や隠れ目地帯および観測点の分布・性状などが把握される。
また、地表の水の分布や地表の水の観察も実施される。
空中の調査は対象を対象として概要から、対象領域を超えた観察への移行し、得られる情報の解釈が容易である。これら、これらの調査によって得られ
た情報に基づき、地下深部の情報と直接に調査するためのポー
リング調査が実施される。地球から地下深部までの地質構造など
が総合的に解釈される。
ポーリング調査では、地下深部の岩石や地下水が採取されると
ともに、ポーリング調査を利用した地下地質調査や物理調査、力学試験な
どが実施される。以下のような項目についての情報が取得される。
- 地質構造：断層・割れ目帯の分布、岩質など
- 地下水の電気伝導性：透水性、間水圧、動水圧など
- 地下水の地球化学特性：pH、還元水酸化電位、主要な水
- 岩盤の性質
- 岩盤の強度特性：力学特性：初期応力、応力、岩盤の性
- 物質の移動経路として重要な地球構造要素の物理的、化学的
- 性質
得られた情報は、地下施設の設計や安全評価などにも活用可能
な定量的な情報として、地質の長期的な変動、化学的、岩盤力学な
どに関するモデルの作成に反映される。
(3) 地下施設を用いた調査
地下施設の建設は、地質調査を伴うものである。処分システムの設計および安全評価に必要なデータが包括的に整備される。さらに、地質調査の基礎の一つである地下施設の設置環境および自然機能としての機能を持つもので、以下のような項目についての情報が取得される。
- 物質の移動経路として地質構造要素の詳細な分布・性状
- 岩盤中の物質の移動・運送特性（間水圧、取水数、拡散係数
- マトリックス拡散率など
- 地下水の流動特性（地質環境の地下水の流動状態）
- 地下水の地球化学特性（地質環境の地下水の酸化還元状態など）
- 岩盤の強度特性：力学特性：地質調査による影響
- 4・3 地質環境調査の開発
地質環境の調査は、土木工学や資源環境などで実用化されてい
る技術の適用が必要な事項において、従来の地下調査に比べて、より大
きな深度(1,000 m 程度)までの地盤をまでに含まれる地盤を対
象としている。長期間の観察に対するもの、クロノスの高い情報
が必要となる、などの特性である。特に、地質・地質構造、
地下水の流動特性と地球化学特性、岩盤の強度特性および
岩盤の中の物質の長期特性など、多様な情報を取得することや、限
られた情報から一定の仮断の状況を適切に推測することが求め
られる。
サイクル機構において、従来の技術の動向や地質環境の観察か
ら必要となる地質環境データの質と精度を吟味した上で、対
象での新たな調査手法の適用可能性について調査する。これにより
観察される地質環境データの質と精度を吟味した上で、対
象での新たな調査手法の適用可能性について調査する。
(4) 地下水調査機器の開発
地下水調査機器の開発としては、大量の地下水を採取できる、1,000 m まで対処可能な調査機と、適応可能な地下水のpH 酸化還元電位などを
直に測定できる地下水化学計測機器、これに装着して地下水の pH プレースメント電位などを
直に測定する地球化学計測ユニットなどを開発した。また、
地下水の水のpH 酸化還元電位などを
直に測定する地球化学計測ユニットなどを開発した。これを活用す
ることにより、広域かつ長期にわたる地下水の動きを把握できるセン
サーとする研究の進行、あるいは、オーバーパーカの遮断特性や自然
の流動特性を評価するために必要な地下水化学データが得られ
る(小出ほか, 1998; 岩月ほか, 1998)。
(2) 物理探査技術の開発
物理探査技術の開発は、地質の境界や断層・割れ目帯の分布、地質構造における重要な地質調査を、調査の進展に応じた精度で効率的に把握する観点から、物理探査技術の開発を図った。今後、地下水の移行経路として重要な断層、割れ目帯の分布や地質面の岩石の物性を効率よく把握するため
の、東電鉄道や高寒鉄道の地下調査を通じて、高精度
の物理探査手法(トネキュラフィー技術など)の有効性の確認や解
析手法の開発を行なった。また、観察データの分析において、地質調査
の地質構造要素を考慮して、広域を対象とした空からの調
査、より密な地表での調査、ポーリング孔を利用した調査などに
活用可能な各種物探手法の適用性を検討した。
そのほか、地下水調査を行うためにポーリング孔の開発技術を
ポーリング孔を利用した地形探査技術、開発技術による周辺調査
への影響の評価を伴うための開発影響評価技術、開発
調査の地質構造を評価するために必要な調査設備技術
などの開発に伴った(佐賀ほか, 1998)など。
5. 地質環境に関するナチュラルアラート技術
地質環境が長期にわたって安定してきた実例を示す観点から、
東京都開発にナチュラルアラート研究のこれまでの成
果を説明した。
東京都開発は、約1千年前に形成されて以来、断層活動や
津波、天災、気候変動などを受けたにもかかわらず、
現在まで生存されている。とくに、経済開発が断層や地下に
30 m まで深い部分においても、ウランが移動した形や消失され
ない。このことは、開発構造の地質環境が長期にわたって地質化
的に安定した状態を維持し、その結果、ウランが地下水中に溶け出
てしまうような状況に至らなかったためと解釈される。
実際に、地球内のウランの核燃料とその核燃料は、放熱と放射能にかかわる場合がある。これにより、放射能は放射能が地下水中に溶け出
ている(YSiida et al., 1994a)。なお、ウランの放射能と放射能を比較した結果に
よれば、放射能の放射能の放射能密度、酸化還元電位、地下水のpH
に比べて放射能密度が高く、一方、放射能密度が放射能密度に比べて放射能密度が低い場合が多い。放射能密度は放射能密度が低い場合が多い。
かに依存している。このことは、ウラン鉱床の有無にかかわらず、地下深部の地質環境は、本来的にウランなどの核種を固定する潜在的な能力を持つをもっていっていることを示唆している。

おわりに

地層処分に適した地質環境が我が国に広く存在し、また、それを選定することができるとの見通しを得た。これは、2000年までの技術的な研究開発の成果である。そして、実施主体が国主導の選定に着手し、国主導の基準の策定を進めようとして技術的な指導者である。

今後は、ここに示したような我が国における地質環境に関する知識を得るための方法を、サイト選定に向けた実験的で透明性のある手続きとして、公に公